Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0

Baryogenesis from Quantum Fluctuations during Inflation

Björn Garbrecht

Department of Physics University of Wisconsin

Workshop Baryogenesis Confronts Experiment KICP, University of Chicago, November 7th–9th 2007 With Tomislav Prokopec arXiv:0706.2594 [astro-ph]

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
•0	000	0000000000	0000	0

Introduction

Linking Baryogenesis and Inflation

Relate observables such as $P_{\mathcal{R}}$, n_s , r to baryogenesis

For example hybrid inflation

- Hybrid inflation and leptogenesis (Senoguz and Shafi 2004-2007): Inflaton decays directly into RH neutrinos through a non-renormalizable operator
 - \rightarrow Relations between reheat temperature, baryon asymmetry
- *F_D*-inflation (Pilaftsis *et. al.* 2006): Inflaton couples at renormalizable level to RH neutrinos and is responsible for RH neutrino mass

 \rightarrow Gravitiono problem is addressed and additional link to the scalar spectral index $n_{\rm s}$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0
Introdu	ction			

In this talk, consider the possibility of linking the baryon asymmetry of the Universe (BAU) to inflationary observables without directly coupling the matter to the inflation sector

BAU is created from vaccuum fluctuations during inflation

- Mechanism and calculation very analogous to case of scalar density perturbations
- This way, BAU appears a initial condition of the hot big bang scenario
- We find that the proposed mechanism is viable
- Requires a high energy scale of inflation, and can therefore be constrained by tighter bounds on *r* available in the near future

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0

Lagrangian and Symmetries

 Scalar Lagrangian with non-standard kinetic and CP-violating mass term:

$$\mathcal{L}_{\phi} = \sqrt{-g} \left[\varrho g^{\mu\nu} (\partial_{\mu}\phi) \partial_{\nu}\phi^* - m^2 \phi \phi^* + \left(\frac{\omega}{2} g^{\mu\nu} \partial_{\mu}\phi \partial_{\nu}\phi - \frac{\mu^2}{2} \phi^2 + \mathrm{c.c.}
ight)
ight]$$

Coupling to fermions:

$$\mathcal{L}_{\rm f} = \sqrt{-g} \left[\overline{\psi} \mathrm{i} \partial \!\!\!/ \psi + \overline{\chi} \mathrm{i} \partial \!\!\!/ \chi - f \left(\overline{\psi} \phi \chi + \mathrm{h.c.} \right) \right]$$

Symmetries of \mathcal{L}_{f} (violated in \mathcal{L}_{ϕ}).

$$\begin{array}{rcl} \psi & \to & \mathrm{e}^{-\mathrm{i}\beta}\psi\,, \\ \chi & \to & \mathrm{e}^{-\mathrm{i}(\alpha+\beta)}\chi\,, \\ \phi & \to & \mathrm{e}^{\mathrm{i}\alpha}\phi \end{array}$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0
Currents				

Fermion current is conserved:

$$j_{\rm f}^{\mu} = \sqrt{-g} \left(-\frac{\beta}{\alpha} \bar{\psi} \Gamma^{\mu} \psi - \frac{\alpha + \beta}{\alpha} \bar{\chi} \Gamma^{\mu} \chi \right) , \qquad \Gamma^{\mu} = \frac{1}{a} \gamma^{\mu} , \quad D_{\mu} j_{\rm f}^{\mu} = 0$$

Scalar current non-conserved:

$$j^{\mu}_{\phi} = \sqrt{g}g^{\mu\nu} \left\{ \mathrm{i}\varrho \left[(\partial_{\nu}\phi^{*})\phi - \phi^{*}(\partial_{\nu}\phi) \right] + \left[\mathrm{i}\omega(\partial_{\nu}\phi)\phi + \mathrm{c.c.}
ight]
ight\}$$

 $D_{\mu}j^{\mu}_{\phi} = \sqrt{-g} \left\{ \mathrm{i}\omega g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi - \mathrm{i}\mu^{2}\phi^{2} + \mathrm{h.c.}
ight\}$

Parametrization of de Sitter background

Conformal coordinates: $g_{\mu\nu} = a^2 \eta_{\mu\nu}$, $a = -\frac{1}{H\eta}$, $\eta \in]-\infty; 0[$ Comoving time: $dt = ad\eta$, $a = e^{Ht}$

Introduction	Model OO●	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions O
Recipe				

- Source CP-violation by the parameters ω and μ
- Choose the mass of the canonically normalized scalar degrees of freedom to be smaller than the Hubble rate H during inflation

Then, the same way scalar density perturbations are generated during inflation, also a charge density emerges. This charge is conserved in the decay of ϕ to fermions and within the subsequent evolution of the Universe after the decays.

Similar to the curvaton mechanism. Instead of curvature, we generate however baryons.

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	000000000	0000	0

Real field decomposition

■ introduce real degrees of freedom ϕ_{\pm} ...

$$\phi = \alpha \phi_+ + i\beta \phi_- , \quad \phi^\dagger = \alpha^* \phi_+ - i\beta^* \phi_-$$

... and impose the kinetic terms to be canonically normalized

$$\mathcal{L}_{\phi} = \sqrt{-g} \left[rac{1}{2} \sum_{\pm} g^{\mu
u} (\partial_{\mu}\phi_{\pm}) \partial_{
u}\phi_{\pm} - rac{1}{2} m_{+}^{2} \phi_{+}^{2} - rac{1}{2} m_{-}^{2} \phi_{-}^{2} - m_{+-}^{2} \phi_{+} \phi_{-}
ight]
ight]$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	000000000	0000	0

Mass terms

All CP violation now resides in the mass terms:

$$\begin{split} m_{+}^{2} &= \frac{\varrho}{\varrho^{2} - |\omega|^{2}} \left[m^{2} + |\mu|^{2} \cos(\theta_{\rm CP} + \theta_{+} + \theta_{-}) \right] \\ &= \frac{\varrho}{\varrho^{2} - |\omega|^{2}} \left[m^{2} - |\mu|^{2} \left(\frac{|\omega|}{\varrho} \cos(\theta_{\rm CP}) + \sqrt{1 - \frac{|\omega|^{2}}{\varrho^{2}}} \sin(\theta_{\rm CP}) \right) \right] \\ m_{-}^{2} &= \frac{\varrho}{\varrho^{2} - |\omega|^{2}} \left[m^{2} - |\mu|^{2} \cos(\theta_{\rm CP} + \theta_{+} - \theta_{-}) \right] \\ &= \frac{\varrho}{\varrho^{2} - |\omega|^{2}} \left[m^{2} - |\mu|^{2} \left(\frac{|\omega|}{\varrho} \cos(\theta_{\rm CP}) - \sqrt{1 - \frac{|\omega|^{2}}{\varrho^{2}}} \sin(\theta_{\rm CP}) \right) \right] \\ m_{+-}^{2} &= \frac{\varrho}{\varrho^{2} - |\omega|^{2}} \left[m^{2} \sin(\theta_{-}) - |\mu|^{2} \sin(\theta_{\rm CP} + \theta_{+}) \right] \\ &= \frac{\varrho}{\varrho^{2} - |\omega|^{2}} \left[m^{2} \frac{|\omega|}{\varrho} - |\mu|^{2} \cos(\theta_{\rm CP}) \right] \end{split}$$

CP-angle:

$$heta_{
m CP} = 2 heta_\mu - heta_\omega \,, \quad \omega = |\omega| {
m e}^{i heta_\omega} \,, \quad \mu = |\mu| {
m e}^{i heta_\mu}$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	000000000	0000	0

Mixing degrees of freedom

Reassemble scalar field

$$\Phi = \left(\begin{array}{c} \phi_+ \\ \phi_- \end{array} \right)$$

Real symmetric mass matrix:

$$M^{2} \equiv \begin{pmatrix} m_{+}^{2} & m_{+-}^{2} \\ m_{+-}^{2} & m_{-}^{2} \end{pmatrix}$$

Equations of motion take simple (and familiar) form:

$$\left(\partial_{\eta}^2-\partial_i^2+a^2M^2-rac{a^{\prime\prime}}{a}
ight)(a\Phi)=0$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	000000000	0000	0

Quantization

Canonical commutation relations

$$\left[\hat{\phi}_a(ec{x},\eta),\hat{\pi}_b(ec{x}',\eta)
ight]=\mathrm{i}\delta_{ab}\delta^3(ec{x}-ec{x}')\qquad(a,b=\pm,\ \hbar=1)$$

Canonical momentum:

$$\hat{\pi}_a = rac{\partial \mathcal{L}_\phi}{\partial \partial_\eta \phi_a} = a^2 \hat{\phi}_a' \,, \qquad (a = \pm)$$

Assemble components

$$\hat{\Phi} = \left(egin{array}{c} \hat{\phi}_+ \\ \hat{\phi}_- \end{array}
ight) \,, \qquad \hat{\Pi} = \left(egin{array}{c} \hat{\pi}_+ \\ \hat{\pi}_- \end{array}
ight)$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0

Quantization

Mode expansion

$$\Phi(x) = \int \frac{d^3k}{(2\pi)^3} \mathrm{e}^{\mathrm{i}\vec{k}\cdot\vec{x}} \left[\Phi_k(\eta) \cdot \hat{A}_{\vec{k}} + \Phi_k^*(\eta) \cdot \hat{A}_{-\vec{k}}^{\dagger} \right]$$

Mode functions are matrix valued

$$\Phi_k = \begin{pmatrix} \phi_{k,++} & \phi_{k,+-} \\ \phi_{k,-+} & \phi_{k,--} \end{pmatrix}, \qquad \hat{A}_{\vec{k}} = \begin{pmatrix} \hat{a}_{\vec{k},+} \\ \hat{a}_{\vec{k},-} \end{pmatrix}$$

Note: M^2 symmetric $\longrightarrow \Phi_k(\eta)$ and $\Phi'_k(\eta)$ symmetric $\Phi^*_k(\eta) = \Phi^{\dagger}_k(\eta)$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0

Mode solutions

Fundamental solutions:

$$\Xi_k(\eta) = \frac{1}{a} \sqrt{-\frac{\pi\eta}{4}} e^{i(\pi/2)(\nu-1/2)} H_{\nu}^{(1)}(-k\eta), \quad \Xi_k^{\dagger}(\eta) \qquad \left(\nu^2 = \frac{9}{4} - \frac{M^2}{H^2}\right)$$

- Matrix generalization of the standard Bunch-Davies (1978) vacuum solution.
- Mode functions are linear combinations in general

$$\Phi_k(\eta) = \gamma_1 \cdot \Xi_k(\eta) + \gamma_2 \cdot \Xi_k(\eta)^{\dagger}, \qquad \Phi^{\dagger} = \Xi_k^{\dagger}(\eta) \cdot \gamma_1 + \Xi_k(\eta) \cdot \gamma_2$$

Wronskian required to satisfy commutation relations:

$$W[\Xi_k(\eta), \Xi_k^{\dagger}(\eta)] = \Xi_k(\eta) \cdot \Xi_k^{\dagger'}(\eta) - \Xi_k'(\eta) \cdot \Xi_k^{\dagger}(\eta) = \frac{\mathrm{i}}{a^2}$$

Canonical commutation relations satisfied if

$$\implies \gamma_1 \cdot \gamma_1^{\dagger} - \gamma_2 \cdot \gamma_2^{\dagger} = \mathbf{1}$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0

Vacuum State

For
$$\eta \to -\infty$$
:
 $a \equiv_k(\eta) \sim \operatorname{diag}(1,1) \frac{1}{\sqrt{2k}} \mathrm{e}^{-\mathrm{i}k\eta}$

- To be associated with the annihilation operator when curvature becomes unimportant (large blue shift)
- Vacuum state corresponding to zero particles as $\eta \rightarrow -\infty$:

$$\gamma_1 = \operatorname{diag}(1,1), \quad \gamma_2 = \operatorname{diag}(0,0)$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	00000000000	0000	0

Scalar Current and Charge

Current operator:

$$\begin{split} \hat{f_{\phi}}^{\mu} &= a^{4} \left\{ \mathrm{i}\varrho \left[(\partial^{\mu} \hat{\phi}^{\dagger}) \hat{\phi} - \hat{\phi}^{\dagger} (\partial^{\mu} \hat{\phi}) \right] + \mathrm{i}\omega (\partial^{\mu} \hat{\phi}) \hat{\phi} - \mathrm{i}\omega^{*} (\partial^{\mu} \hat{\phi}^{\dagger}) \hat{\phi}^{\dagger} \right\} \\ &= a^{4} \left\{ - \frac{|\omega|}{\sqrt{\varrho^{2} - |\omega|^{2}}} \left[\hat{\phi}_{+} \partial^{\mu} \hat{\phi}_{+} - \hat{\phi}_{-} \partial^{\mu} \hat{\phi}_{-} \right] \right. \\ &+ \frac{\varrho}{\sqrt{\varrho^{2} - |\omega|^{2}}} \left[\hat{\phi}_{+} \partial^{\mu} \hat{\phi}_{-} - \hat{\phi}_{-} \partial^{\mu} \hat{\phi}_{+} \right] \right\} \end{split}$$

Charge:

$$\begin{split} q_{\phi} &= \frac{j_{\phi}^{0}}{a^{3}} = -\frac{1}{2} \frac{|\omega|}{\sqrt{\varrho^{2} - |\omega|^{2}}} \partial_{t} \int \frac{d^{3}k}{(2\pi)^{3}} \left[|\Phi_{k}(\eta)|^{2}_{++} - |\Phi_{k}(\eta)|^{2}_{--} \right] \\ &+ \frac{1}{2} \frac{\varrho}{\sqrt{\varrho^{2} - |\omega|^{2}}} \partial_{t} \int \frac{d^{3}k}{(2\pi)^{3}} \left[|\Phi_{k}(\eta)|^{2}_{+-} - |\Phi_{k}(\eta)|^{2}_{-+} \right] \end{split}$$

• Φ symmetric \Longrightarrow 2nd line does not contribute

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	00000000000	0000	0

de Sitter propagator

Mode sum:

$$\mathrm{i}\Delta(x,x') = \langle 0|\Phi(x')\Phi^{\dagger}(x)|0\rangle = \int \frac{d^{3}k}{(2\pi)^{3}}\Phi_{k}(\eta)\mathrm{e}^{\mathrm{i}\mathbf{k}\cdot\mathbf{x}}\Phi_{k}^{*}(\eta')\mathrm{e}^{-\mathrm{i}\mathbf{k}\cdot\mathbf{x}'}$$

Chernikov-Tagirov (1968) solution :

$$i\Delta(x,x') = \frac{\Gamma(\frac{3}{2}+\nu)\Gamma(\frac{3}{2}-\nu)}{(4\pi)^2}H^2 {}_2F_1\left(\frac{3}{2}+\nu,\frac{3}{2}-\nu;2;1-\frac{y}{4}\right)$$

dS-invariant distance (ℓ is geodesic disance):

$$y = \frac{-(\eta - \eta')^2 + \mathbf{x}^2}{\eta \eta'} = 4\sin^2\left(\frac{1}{2}H\ell\right)$$

Expansion in *y*:

$$i\Delta(x, x') = \frac{H^2}{4\pi^2} \frac{1}{y} + \frac{H^2}{16\pi^2} \sum_{n=0}^{\infty} \frac{\Gamma\left(\frac{3}{2} + \nu + n\right) \Gamma\left(\frac{3}{2} - \nu + n\right)}{\Gamma\left(\frac{1}{2} + \nu\right) \Gamma\left(\frac{1}{2} - \nu\right)} \left(\frac{y}{4}\right)^n \\ \times \left[\log\frac{y}{4} + \psi\left(\frac{3}{2} + \nu + n\right) + \psi\left(\frac{3}{2} - \nu + n\right) - \psi\left(1 + n\right) - \psi\left(2 + n\right)\right]$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0

Charge Asymmetry from Inflation

• Next, expand in M^2/H^2

$$\begin{split} \mathrm{i}\Delta(x,x') \ = \ \frac{H^2}{4\pi^2} \frac{1}{y} + \frac{3H^4}{8\pi^2 M^2} + \left(\frac{\log 2}{4\pi^2} - \frac{7}{24\pi^2} - \frac{\log y}{8\pi^2}\right) H^2 \\ + \left(\frac{\log y}{16\pi^2} - \frac{\log 2}{8\pi^2} - \frac{1}{216\pi^2} + O(y)\right) M^2 + O\left(\frac{M^4}{H^2}\right) \end{split}$$

• Note: $(\partial_t + \partial_{t'}) \log y|_{x=x'} = H$

$$q_{\phi} = \frac{1}{8\pi^2} |\omega\mu^2| H \sin\theta_{\rm CP} \frac{1}{\varrho^2 - |\omega|^2}$$

Can be related to scale of inflation

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	000000000	0000	0

Validity of Expansion

- Need to require $|M|^2 \lesssim H^2$
- Mass eigenvalues

$$\begin{split} M_{\pm}^2 &= \frac{\varrho}{\varrho^2 - |\omega|^2} \Bigg[m^2 - \frac{|\omega\mu^2|}{\varrho} \cos\theta_{\rm CP} \\ &\pm \sqrt{|\mu|^4 \left(1 - \frac{|\omega|^2}{\varrho^2}\right) + m^4 \frac{|\omega|^2}{\varrho^2} - 2 \frac{|\omega\mu^2|}{\varrho^2} m^2 \cos\theta_{\rm CP}} \Bigg] \end{split}$$

- Also estimate $|\omega\mu^2|/(\varrho^2 |\omega|^2) \lesssim H^2$ (important to find bound on baryon assymmetry)
- $\blacksquare \Longrightarrow$ Cannot achieve resonance by setting $\varrho \sim |\omega|$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	•000	0

Present upper Bound on Scale of Inflation

Hubble rate and potential

$$H^2 = \frac{8\pi}{3} \frac{V}{m_{\rm Pl}^2}$$

Relation to tensor-to-scalar ratio

$$V \approx (3.3 \times 10^{16} \text{GeV})^4 r$$

■ WMAP3+SDSS (no running of n_s): r < 0.30 at 95% c.l.

$$\blacksquare \implies V^{1/4} < 2.4 \times 10^{16} \text{GeV}$$

- Future bounds: Planck r < 0.1, CLOVER r < 0.01
- For comparison: $V = \frac{1}{2}m^2\phi_1^2$ -inflation: $V^{1/4} \approx 2.0 \times 10^{16}$ GeV at horizon exit; $V^{1/4} \approx 0.5 \times 10^{16}$ GeV at the end of inflation

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions O
Lyth bo	und			

■ For 50 e-folds of Inflation (Lyth 1997)

$$\Delta\phi_{\rm I}\approx 11m_{\rm Pl}r^{1/2}$$

■ Models with large *r* require to trans-Planckian Inflaton VEVs

■ These models are ill-motivated within supergravity

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0

Baryon Asymmetry and Scale of Inflation

$$q_{\phi} = \frac{1}{8\pi^2} |\omega \mu^2| H \sin \theta_{\rm CP} \frac{1}{\varrho^2 - |\omega|^2}$$

Conserved charge-to-entropy ratio after reheating:

$$\frac{q_{\phi}^{\rm R}}{s} = \left(\frac{a_{\rm end}}{a_{\rm R}}\right)^3 \frac{q_{\phi}}{s} = \frac{3}{4} \frac{T_{\rm R}}{V} q_{\phi}$$

■
$$T_{\rm R} = \left(\frac{30\rho_{\rm E}}{\pi^2 g_*}\right)^{1/4}$$
; Instant reheating ($g_* = 106.75$): $T_{\rm R}/V^{1/4} = 0.41$
■ Observed BAU (WMAP3): $\frac{n_{\rm B}}{s} \simeq 8.7 \times 10^{-11}$
■ For $q_{\phi} = \tau H^3$:

$$\frac{n_B}{s} \sim \frac{q_{\phi}^{\rm R}}{s} = 17.2 \times (8.7 \times 10^{-11}) \tau \frac{T_{\rm R}}{0.41 \, V^{1/4}} \left(\frac{V^{1/4}}{10^{16} {\rm GeV}}\right)^3$$

Assuming instant reheating, the present 95% upper bound on r implies:

$$\tau > 4.3 \times 10^{-3}$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	0

Sketch of a possible connection to the Standard Model

U(1)_{B-L}-violating condensate X at energy scale A
 CP-violating parameters can be of the origin:

$$\omega = h_\omega X^{*2} , \qquad \mu^2 = h_\mu X^{*2}$$

For example, assume couplings

$$\lambda X \phi^{*2} \phi + \lambda^* X^* \phi^2 \phi^*$$

Self-energy for $(\phi \phi^*)^T$

$$\mathrm{i}\Pi(p) = -rac{\mathrm{i}}{8\pi^2} \left(egin{array}{cc} (\lambda X)^2 + (\lambda X)^{*2} & |\lambda X|^2 \ |\lambda X|^2 & (\lambda X)^2 + (\lambda X)^{*2} \end{array}
ight) \left(\lograc{\Lambda^2}{m^2} + rac{p^2}{6m^2}
ight)$$

(have expanded in $p^2 < 4m^2$ and $m^2 < \Lambda$.

- $\blacksquare \ \Pi(p^2) \longrightarrow \mu^2 \text{-term}; \qquad \partial \Pi(p^2) / \partial p^2 \longrightarrow \underset{\sim}{ \partial \text{-term}}$
- Decay to baryons by introducing a fermion \tilde{H} with same gauge quantum numbers as the Standard Model Higgs field, L is the left-handed lepton doublet

$$\phi L \widetilde{H} + h.c.$$

Introduction	Model	Baryon Asymmetry	Relation to Scale of Inflation	Conclusions
00	000	0000000000	0000	•

Conclusions

- Baryogenesis from the amplification of vacuum fluctuations during inflation is possible.
- Large scale of inflation is required, close to present observational bounds.
- High reheat temperatures are required.
- Not a good scenario for local SUSY.
- However, a nice scenario in the case Planck or CLOVER discover tensor perturbations.