Baryogenesis in the nMSSM and Collider Physics

A. Freitas University of Chicago / ANL

based on: C. Balász, M. Carena, A. Freitas, C. Wagner, JHEP 06 (2007) 066 Baryogenesis in the nMSSM and Collider Physics

A. Freitas University of Chicago / ANL

based on: C. Balász, M. Carena, A. Freitas, C. Wagner, JHEP 06 (2007) 066

1. Characteristics of the nMSSM

2. nMSSM at colliders

3. Connection to cosmology

Characteristics of the nMSSM

 \rightarrow talk of D. Morrissey

$$\begin{split} W &= \lambda \hat{S} \hat{H}_1 \cdot \hat{H}_2 + m_{12}^2 / \lambda \hat{S} + \text{ Yukawa terms} \\ \mathcal{L}_{\text{soft}} &= m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 + m_s^2 |S|^2 + (t_s S + a_\lambda S H_1 \cdot H_2 + \text{h.c.}) \\ &+ \text{ gaugino and sfermion terms} \end{split}$$

Solve μ -problem: Effective μ -term through VEV of S: $\mu_{eff} = -\lambda \langle S \rangle$

Evade LEP-Higgs bounds

 λ coupling allows heavier CP-even Higgs masses than MSSM

$$m_{\rm h}^2 \le M_Z^2 \left(\cos^2 2\beta + \frac{2\lambda^2}{g^2 + g'^2}\sin^2 2\beta\right)$$

Strong 1st order electroweak phase transition

Triple-Higgs coupling λ already at tree-level

Lightest neutralino $\tilde{\chi}_1^0$ is mainly singlino and $m_{\tilde{\chi}_1^0} \sim M_{\rm Z}/2$

Electroweak symmetry breaking: $m_{12} \rightarrow M_A$, $m_s \rightarrow v_s = \langle S \rangle$

Constraints from CDM density and LEP force

$$\label{eq:lambda} \begin{split} &\tan\beta\sim\mathcal{O}(1) \qquad \lambda=0.5...0.8 \qquad |\mu|=|\lambda v_s|=100...350 \ \text{GeV} \\ (\text{upper bound on }\lambda \text{ from perturbativity}) \end{split}$$

Requirement of strong electroweak phase transition for baryogenesis

 $a_{\lambda} = 300...600 \text{ GeV}$ $t_s = (50...200 \text{ GeV})^3$

Typical parameter point:

$$v_s = -384 \text{ GeV}$$
 $a_\lambda = 373 \text{ GeV}$ $\tan \beta = 1.7$ $\lambda = 0.62$
 $t_s = (157 \text{ GeV})^3$ $M_A = 923 \text{ GeV}$ $|M_2| = 245 \text{ GeV}$ $\phi_{\mu M_2} = 0.14$

<u>Spectrum</u>

- 1st/2nd gen. sfermions heavy (few TeV) to avoid EDM constraints
- 3rd generation sfermions at ~ 500 GeV for baryogenesis and Higgs naturalness
- All neutralinos/charginos have m < 500 GeV Mainly decay through gauge bosons
- 3 CP-even Higgs states S_{1,2,3}
 2 CP-odd Higgs states P_{1,2}
- Light Higgses have large coupling λ to singlet $\rightarrow BR(S_1, S_2, P_1 \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0) > 90\%$

Spectrum

nMSSM at colliders

nMSSM at LHC

Invisible Higgs(es) can be seen, but mass measurement difficult Choudhury, Roy '94 Eboli, Zeppenfeldt '00

Neutralinos produced in stop/sbottom cascades

e.g. $\tilde{g} \to b \, \tilde{b}^* \to b \bar{b} \, \tilde{\chi}_2^0 \to b \bar{b} \, l^+ l^- \, \tilde{\chi}_1^0$

Mass measurements in invariant mass distributions

 \rightarrow Good determination of mass differences

nMSSM at LHC

Invisible Higgs(es) can be seen, but mass measurement difficult Choudhury, Roy '94 Eboli, Zeppenfeldt '00

Neutralinos produced in stop/sbottom cascades

e.g. $\tilde{g} \to b \, \tilde{b}^* \to b \bar{b} \, \tilde{\chi}_2^0 \to b \bar{b} \, l^+ l^- \, \tilde{\chi}_1^0$

Mass measurements in invariant mass distributions

- \rightarrow Good determination of mass differences
- → Poor determination of abolute masses

Typical errors for $m_{\tilde{\chi}^0_{1,2,3}}$: 20–30 GeV

nMSSM at GigaZ

Since $m_{\tilde{\chi}_1^0} < M_Z/2$, constraints can be obtained from ILC at Z- pole Carena, Freitas, de Gouvêa, Schmitt '03

Dark matter annihilation proceeds through s-channel Z-exchange

Model-independent information

• Poor precision $\sim 60\%$

(LEP constraints do not leave much room)

nMSSM at ILC

• Two (invisible) scalar Higgs bosons S_1 and S_2 can be found and measured through $e^+e^- \rightarrow Z S_k$ Branching fraction give estimate of Higgs selfcoupling λ

- Many SUSY particles could be discovered at 500 GeV ILC
- Reduction of SM backgrounds possible with few cuts

nMSSM at ILC

• At ILC with $\sqrt{s} = 500$ GeV charginos and neutralinos can be precisely measured (similar to MSSM)

	$ ilde{\chi}_1^0$	$ ilde{\chi}_2^0$	$ ilde{\chi}_3^0$	$ ilde{\chi}_4^0$	$\tilde{\chi}_1^{\pm}$	$\tilde{\chi}_2^{\pm}$
m	33	107	182	278	165	320 GeV
δm	0.4	1.2	5	3.5	0.05	5.5 GeV

Discovery of two neutralino states with $m_{\tilde{\chi}^0_{1,2}} \ll m_{\tilde{\chi}^\pm_1}$ immediately tells $> {\rm MSSM}$

Allows extraction of fundamental parameters and test of CDM and baryogenesis hypotheses

Interpretation of results

Fundamental parameters from neutralino/chargino maesurements:

$$\begin{split} M_1 &= (122.5 \pm 1.3) \text{ GeV}, & |\kappa| < 2.0 \text{ GeV}, & m_{\tilde{\nu}_{\text{e}}} > 5 \text{ TeV}, \\ M_2 &= (245.0 \pm 0.7) \text{ GeV}, & \tan\beta = 1.7 \pm 0.09, & m_{\tilde{e}_{\text{R}}} > 1 \text{ TeV}. \\ |\lambda| &= 0.619 \pm 0.007, & |\phi_M| < 0.32, \\ v_{\text{S}} &= (-384 \pm 4.8) \text{ GeV}, \end{split}$$

- Higgs triple coupling can be measured precisely
- Absence of cubic singlet self-coupling can be tested (nMSSM ↔ NMSSM)

$$M_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & \mathcal{O}(v) & \mathcal{O}(v) & 0\\ 0 & M_2 & \mathcal{O}(v) & \mathcal{O}(v) & 0\\ \mathcal{O}(v) & \mathcal{O}(v) & 0 & \lambda v_s & \mathcal{O}(v)\\ \mathcal{O}(v) & \mathcal{O}(v) & \lambda v_s & 0 & \mathcal{O}(v)\\ 0 & 0 & \mathcal{O}(v) & \mathcal{O}(v) & \kappa \end{pmatrix}$$

Connection to cosmology

Dark matter density projection from simulation

LHC does not tell much

ILC allows computation with precision comparable to WMAP

Direct detection

• Large singlino component of $\tilde{\chi}_1^0$: Spin-independent cross-section is sizeable due to singlet-Higgs coupling λ Spin-dependent cross-section is

Spin-dependent cross-section is very small

 Next generation SI experiments can probe this scenario

Direct detection

• Large singlino component of $\tilde{\chi}_1^0$: Spin-independent cross-section is sizeable due to singlet-Higgs coupling λ

Spin-dependent cross-section is very small

 Next generation SI experiments can probe this scenario

Testing electroweak baryogenesis

- Neutralino/chargino parameters allow to extract some parameters
- More information from Higgs masses: $M_{S1} = 115.2 \pm 0.13$ GeV, $M_{S2} = 156.6 \pm 0.19$ GeV
- Mass matrix of CP-even Higgs bosons gets large corrections:

 $M_S^2 = M_{S,\text{tree}}^2 + \Delta M_S^2$

Leading contributions from t/\tilde{t} loops, e.g.

$$\Delta M_{S,11}^2 \approx \frac{3}{8\pi^2} \frac{m_{\rm t}^4}{v^2} \log \frac{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2}{m_{\rm t}^4}$$

In general very complicated, depends on stop mixing, A_{t}

• Assumptions: $\delta m_{\tilde{t}} = 50 \text{ GeV}$ (no simulations for LHC available) $A_{\rm t} \lesssim 500 \,\,{\rm GeV}$ (from small stop mass difference)

Testing electroweak baryogenesis

- Neutralino/chargino parameters allow to extract some parameters
- \blacksquare More information from Higgs masses: $M_{S1} = 115.2 \pm 0.13 \ {\rm GeV}, \ M_{S2} = 156.6 \pm 0.19 \ {\rm GeV}$

Parameter	Input value	Expected constraints	Range preferred
		from ILC	by baryogenesis
m_s	106.5 GeV	$88 < m_s < 122$	$50 \lesssim m_s \lesssim 200$
a_{λ}	373 GeV	$352 < a_\lambda < 390$	$300 \lesssim a_\lambda \lesssim 600$
$t_{s}^{1/3}$	157 GeV	$117 < t_s^{1/3} < 181$	$50 \lesssim t_s^{1/3} \lesssim 200$

 Constraints from experiment not very precise (mainly from loop corrections) but sufficient to test conditions for EWBG

Conclusions

- Baryogenesis and dark matter within the nMSSM lead to strong constraints on the parameters space
- This scenario will be testable at the LHC and ILC
- The LHC would be able to rule out EWBG in the nMSSM
- Precision measurements at the ILC can
 - distinguish nMSSM from MSSM
 - test the validity of SUSY dark matter accurately
 - explore the electroweak phase transistion quantitatively