Baryogenesis in the nMSSM and Collider Physics

A. Freitas

University of Chicago / ANL
based on:
C. Balász, M. Carena, A. Freitas, C. Wagner, JHEP 06 (2007) 066

Baryogenesis in the nMSSM and Collider Physics

A. Freitas

University of Chicago / ANL
based on:
C. Balász, M. Carena, A. Freitas, C. Wagner, JHEP 06 (2007) 066

1. Characteristics of the nMSSM
2. nMSSM at colliders
3. Connection to cosmology

Characłeristics of the nMSSM

Reminder: Structure of nMSSM

$$
\begin{aligned}
W= & \lambda \widehat{S} \hat{H}_{1} \cdot \hat{H}_{2}+m_{12}^{2} / \lambda \widehat{S}+\text { Yukawa terms } \\
\mathcal{L}_{\text {soft }}= & m_{1}^{2} H_{1}^{\dagger} H_{1}+m_{2}^{2} H_{2}^{\dagger} H_{2}+m_{s}^{2}|S|^{2}+\left(t_{s} S+a_{\lambda} S H_{1} \cdot H_{2}+\text { h.c. }\right) \\
& + \text { gaugino and sfermion terms }
\end{aligned}
$$

- Solve μ-problem:

Effective μ-term through VEV of $S: \quad \mu_{\text {eff }}=-\lambda\langle S\rangle$

- Evade LEP-Higgs bounds
λ coupling allows heavier CP-even Higgs masses than MSSM
$m_{\mathrm{h}}^{2} \leq M_{\mathrm{Z}}^{2}\left(\cos ^{2} 2 \beta+\frac{2 \lambda^{2}}{g^{2}+g^{\prime 2}} \sin ^{2} 2 \beta\right)$
- Strong 1st order electroweak phase transition

Triple-Higgs coupling λ already at tree-level

Lightest neutralino $\tilde{\chi}_{1}^{0}$ is mainly singlino and $m_{\tilde{\chi}_{1}^{0}} \sim M_{\mathrm{Z}} / 2$
Electroweak symmetry breaking: $m_{12} \rightarrow M_{\mathrm{A}}, m_{s} \rightarrow v_{s}=\langle S\rangle$
Constraints from CDM density and LEP force

$$
\tan \beta \sim \mathcal{O}(1) \quad \lambda=0.5 \ldots 0.8 \quad|\mu|=\left|\lambda v_{s}\right|=100 \ldots 350 \mathrm{GeV}
$$

(upper bound on λ from perturbativity)
Requirement of strong electroweak phase transition for baryogenesis

$$
a_{\lambda}=300 \ldots 600 \mathrm{GeV} \quad t_{s}=(50 \ldots 200 \mathrm{GeV})^{3}
$$

Typical parameter point:

$$
\begin{array}{rlrlr}
v_{s} & =-384 \mathrm{GeV} & a_{\lambda} & =373 \mathrm{GeV} & \tan \beta=1.7 \\
t_{s} & =(157 \mathrm{GeV})^{3} & M_{\mathrm{A}} & =923 \mathrm{GeV} & \\
\left|M_{2}\right| & =245 \mathrm{GeV} & \phi_{\mu M_{2}}=0.14
\end{array}
$$

Spectrum

- 1st/2nd gen. sfermions heavy (few TeV) to avoid EDM constraints
- 3rd generation sfermions at $\sim 500 \mathrm{GeV}$ for baryogenesis and Higgs naturalness
- All neutralinos/charginos have $m<500 \mathrm{GeV}$ Mainly decay through gauge bosons
- 3 CP-even Higgs states $S_{1,2,3}$

2 CP-odd Higgs states $P_{1,2}$

- Light Higgses have large coupling λ to singlet
$\rightarrow \operatorname{BR}\left(S_{1}, S_{2}, P_{1} \rightarrow \tilde{\chi}_{1}^{0} \tilde{\chi}_{1}^{0}\right)>90 \%$

Spectrum

nMSSM at colliders

nMSSM at LHC

- Invisible Higgs(es) can be seen, but mass measurement difficult

Choudhury, Roy '94 Eboli, Zeppenfeldt '00

- Neutralinos produced in stop/sbottom cascades

$$
\text { e.g. } \tilde{g} \rightarrow b \tilde{b}^{*} \rightarrow b \bar{b} \tilde{\chi}_{2}^{0} \rightarrow b \bar{b} l^{+} l^{-} \tilde{\chi}_{1}^{0}
$$

Mass measurements in invariant mass distributions
\rightarrow Good determination of mass differences

nMSSM at LHC

- Invisible Higgs(es) can be seen, but mass measurement difficult

Choudhury, Roy '94 Eboli, Zeppenfeldt '00

- Neutralinos produced in stop/sbottom cascades

$$
\text { e.g. } \tilde{g} \rightarrow b \tilde{b}^{*} \rightarrow b \bar{b} \tilde{\chi}_{2}^{0} \rightarrow b \bar{b} l^{+} l^{-} \tilde{\chi}_{1}^{0}
$$

Mass measurements in invariant mass distributions
\rightarrow Good determination of mass differences
\rightarrow Poor determination of abolute masses

Typical errors for $m_{\tilde{\chi}_{1,2,3}^{0}}$: 20-30 GeV

nMSSM at GigaZ

Since $m_{\tilde{\chi}_{1}^{0}}<M_{Z} / 2$, constraints can be obtained from ILC at Z - pole Carena, Freitas, de Gouvêa, Schmitt '03

Dark matter annihilation proceeds through s-channel Z-exchange

- Model-independent information

- Poor precision $\sim 60 \%$
(LEP constraints do not leave much room)

nMSSM at ILC

- Two (invisible) scalar Higgs bosons S_{1} and S_{2} can be found and measured through $e^{+} e^{-} \rightarrow Z S_{k}$
Branching fraction give estimate of Higgs selfcoupling λ
- Many SUSY particles could be discovered at 500 GeV ILC
- Reduction of SM backgrounds possible with few cuts
- Sparticle mass determination from kinematic edges

$$
\begin{aligned}
& E_{\text {X.: }: ~}^{e} e^{-} \rightarrow \tilde{\chi}_{1}^{1} \tilde{\chi}_{1}^{-}, \quad \tilde{\chi}_{1}^{+} \rightarrow W^{+} \tilde{\chi}_{1}^{0} \rightarrow j j \tilde{\chi}_{1}^{0} \\
& \begin{aligned}
E_{\text {min }, \text { max }}= & \frac{1}{4 m_{2_{1}^{2}}^{2}}\left[\left(m_{\tilde{\chi}_{1}^{+}}^{2}-m_{\tilde{\chi}_{1}^{0}}^{2}+M_{W}^{2}\right) \sqrt{s}\right. \\
& \left.\mp \sqrt{\lambda\left(m_{\chi_{1}^{+}}^{2}, m_{\tilde{\chi}_{1}^{2}}^{2}, M_{W}^{2}\right)\left(s-4 m_{\chi_{1}^{+}}^{2}\right)}\right]
\end{aligned}
\end{aligned}
$$

nMSSM at ILC

- At ILC with $\sqrt{s}=500 \mathrm{GeV}$ charginos and neutralinos can be precisely measured (similar to MSSM)

	$\tilde{\chi}_{1}^{0}$	$\tilde{\chi}_{2}^{0}$	$\tilde{\chi}_{3}^{0}$	$\tilde{\chi}_{4}^{0}$	$\tilde{\chi}_{1}^{ \pm}$	$\tilde{\chi}_{2}^{ \pm}$
m	33	107	182	278	165	320 GeV
δm	0.4	1.2	5	3.5	0.05	5.5 GeV

Discovery of two neutralino states with $m_{\tilde{\chi}_{1,2}^{0}} \ll m_{\tilde{\chi}_{1}^{ \pm}}$immediately tells > MSSM

- Allows extraction of fundamental parameters and test of CDM and baryogenesis hypotheses

Interpretation of results

Fundamental parameters from neutralino/chargino maesurements:

$$
\begin{aligned}
M_{1} & =(122.5 \pm 1.3) \mathrm{GeV}, & \quad|\kappa|<2.0 \mathrm{GeV}, & m_{\tilde{\mathrm{\nu}}_{\mathrm{e}}}>5 \mathrm{TeV}, \\
M_{2} & =(245.0 \pm 0.7) \mathrm{GeV}, & \tan \beta=1.7 \pm 0.09, & m_{\tilde{e}_{\mathrm{R}}}>1 \mathrm{TeV} \\
|\lambda| & =0.619 \pm 0.007, & & \\
v_{\mathrm{S}} & =(-384 \pm 4.8) \mathrm{GeV}, & &
\end{aligned}
$$

- Higgs triple coupling can be measured precisely
- Absence of cubic singlet self-coupling can be tested (nMSSM $\leftrightarrow N M S S M)$

$$
M_{\tilde{\chi}^{0}}=\left(\begin{array}{ccccc}
M_{1} & 0 & \mathcal{O}(v) & \mathcal{O}(v) & 0 \\
0 & M_{2} & \mathcal{O}(v) & \mathcal{O}(v) & 0 \\
\mathcal{O}(v) & \mathcal{O}(v) & 0 & \lambda v_{s} & \mathcal{O}(v) \\
\mathcal{O}(v) & \mathcal{O}(v) & \lambda v_{s} & 0 & \mathcal{O}(v) \\
0 & 0 & \mathcal{O}(v) & \mathcal{O}(v) & \kappa
\end{array}\right)
$$

Connection to cosmology

Dark matter density projection from simulation

- WMAP $+S D S S, \pm 2 \sigma$
....- LHC scan, excluded
\square ILC scan, $\pm 1 \sigma$
* Input model
.....: LHC scan, allowed $\square I L C$ scan, $\pm 2 \sigma$
- WMAP + SDSS, $\pm 2 \sigma$
....- LHC scan, excluded
.-..- ILC scan, $\pm 1 \sigma$
* Input model
:...: LHC scan, allowed
....- ILC scan, $\pm 2 \sigma$
- LHC does not tell much
- ILC allows computation with precision comparable to WMAP

Direct detection

* Input model
..... LHC scan, excluded
....:. LHC scan, allowed
$\square I L C$ scan,$\pm 2 \sigma$
- Large singlino component of $\tilde{\chi}_{1}^{0}$: Spin-independent cross-section is sizeable due to singlet-Higgs coupling λ

Spin-dependent cross-section is very small

- Next generation SI experiments can probe this scenario

Direct detection

- Large singlino component of $\tilde{\chi}_{1}^{0}$: Spin-independent cross-section is sizeable due to singlet-Higgs coupling λ

Spin-dependent cross-section is very small

- Next generation SI experiments can probe this scenario

Testing electroweak baryogenesis

- Neutralino/chargino parameters allow to extract some parameters
- More information from Higgs masses:

$$
M_{S 1}=115.2 \pm 0.13 \mathrm{GeV}, M_{S 2}=156.6 \pm 0.19 \mathrm{GeV}
$$

- Mass matrix of CP-even Higgs bosons gets large corrections:

$$
M_{S}^{2}=M_{S, \text { tree }}^{2}+\Delta M_{S}^{2}
$$

Leading contributions from t / \tilde{t} loops, e.g.

$$
\Delta M_{S, 11}^{2} \approx \frac{3}{8 \pi^{2}} \frac{m_{\mathrm{t}}^{4}}{v^{2}} \log \frac{m_{\tilde{t}_{1}}^{2} m_{\tilde{t}_{2}}^{2}}{m_{\mathrm{t}}^{4}}
$$

In general very complicated, depends on stop mixing, A_{t}

- Assumptions: $\delta m_{\tilde{t}}=50 \mathrm{GeV}$ (no simulations for LHC available) $A_{\mathrm{t}} \lesssim 500 \mathrm{GeV} \quad$ (from small stop mass difference)

Testing electroweak baryogenesis

- Neutralino/chargino parameters allow to extract some parameters
- More information from Higgs masses:

$$
M_{S 1}=115.2 \pm 0.13 \mathrm{GeV}, M_{S 2}=156.6 \pm 0.19 \mathrm{GeV}
$$

Parameter	Input value	Expected constraints from ILC	Range preferred by baryogenesis
m_{s}	106.5 GeV	$88<m_{s}<122$	$50 \lesssim m_{s} \lesssim 200$
a_{λ}	373 GeV	$352<a_{\lambda}<390$	$300 \lesssim a_{\lambda} \lesssim 600$
$t_{s}^{1 / 3}$	157 GeV	$117<t_{s}^{1 / 3}<181$	$50 \lesssim t_{s}^{1 / 3} \lesssim 200$

- Constraints from experiment not very precise (mainly from loop corrections) but sufficient to test conditions for EWBG

Conclusions

- Baryogenesis and dark matter within the nMSSM lead to strong constraints on the parameters space
- This scenario will be testable at the LHC and ILC
- The LHC would be able to rule out EWBG in the nMSSM
- Precision measurements at the ILC can
- distinguish nMSSM from MSSM
- test the validity of SUSY dark matter accurately
- explore the electroweak phase transistion quantitatively

