Connecting Leptogenesis to Low Energy LFV Processes in Models with Spontaneous CP Violation

Mu-Chun Chen
University of California at Irvine

work done in collaboration with K.T. Mahanthappa, Phys. Rev. D7I, 03500 (2005)
Phys. Rev. D75, 01500 I (2007)

KICPWorkshop on Baryogenesis Confronts Experiment, University of Chicago, November 7, 2007

Baryon Number Asymmetry in SM

CP violation in quark sector not sufficient to explain the observed matter -anti-matter asymmetry of the Universe

$$
n_{b} / s=(0.87 \pm 0.04) \times 10^{-10}
$$

- CP phase in CKM matrix:

$$
\begin{aligned}
& B \simeq \frac{\alpha_{w}^{4} T^{3}}{s} \delta_{C P} \simeq 10^{-8} \delta_{C P} \quad \delta_{C P} \simeq \frac{A_{C P}}{T_{C}^{12}} \simeq 10^{-20} \\
& A_{C P}=\left(m_{t}^{2}-m_{c}^{2}\right)\left(m_{c}^{2}-m_{u}^{2}\right)\left(m_{u}^{2}-m_{t}^{2}\right)\left(m_{b}^{2}-m_{s}^{2}\right)\left(m_{s}^{2}-m_{d}^{2}\right)\left(m_{d}^{2}-m_{b}^{2}\right) \cdot J
\end{aligned}
$$

- effects of $C P$ violation suppressed by small quark mixing
$\longrightarrow \quad B \sim 10^{-28}$
too small to account for the observed $B \sim 10^{-10}$

Leptogenesis

- non-zero neutrino masses: additional CPV sources from lepton sector
- primordial lepton number asymmetry due to out-ofequilibrium decays of RH neutrinos

$$
\epsilon_{1} \simeq-\frac{3}{8 \pi} \frac{1}{\left(h_{\nu} h_{\nu}^{\dagger}\right)_{11}} \sum_{i=2,3} \operatorname{Im}\left\{\left(h_{\nu} h_{\nu}^{\dagger}\right)_{1 i}^{2}\right\} \frac{M_{1}}{M_{i}}
$$

- sphaleron effects: $\Delta \mathrm{L} \rightarrow \Delta \mathrm{B}$

Connection to Low Energy Observables

- Lagrangian at high energy (in the presence of RH neutrinos)

$$
\begin{aligned}
\mathcal{L}= & \bar{\ell}_{L_{i}} i \gamma^{\mu} \partial_{\mu} \ell_{L_{i}}+\bar{e}_{R_{i}} i \gamma^{\mu} \partial_{\mu} e_{R_{i}}+\bar{N}_{R_{i}} i \gamma^{\mu} \partial_{\mu} N_{R_{i}} \\
& +f_{i j} \bar{e}_{R_{i}} \ell_{L_{j}} H^{\dagger}+h_{i j} \bar{N}_{R_{i}} \ell_{L_{j}} H-\frac{1}{2} M_{i j} N_{R_{i}} N_{R_{j}}+\text { h.c. }
\end{aligned}
$$

in f_{ij} and M_{ij} diagonal basis \rightarrow
$h_{i j}$ general complex matrix: $\left\{\begin{array}{l}9-3=6 \text { mixing angles } \\ 9-3=6 \text { physical phases }\end{array}\right.$

- Low energy effective Lagrangian (after integrating out RH neutrinos)
$\mathcal{L}_{e f f}=\bar{\ell}_{L_{i}} i \gamma^{\mu} \partial_{\mu} \ell_{L_{i}}+\bar{e}_{R_{i}} i \gamma^{\mu} \partial_{\mu} e_{R_{i}}+f_{i i} \bar{e}_{R_{i}} \ell_{L_{i}} H^{\dagger}+\frac{1}{2} \sum_{k} h_{i k}^{T} h_{k j} \ell_{L_{i}} \ell_{L_{j}} \frac{H^{2}}{M_{k}}+h . c$.
in $f_{i j}$ diagonal basis \rightarrow
$h_{i j}$ symmetric complex matrix: $\left\{\begin{array}{l}6-3=3 \text { mixing angles } \\ 6-3=3 \text { physical phases }\end{array}\right.$
- high energy \rightarrow low energy:
numbers of mixing angles and CP phases reduced by half

Connection to Low Energy Observables

- diagonal basis for charged lepton and RH neutrino mass matrices
- neutrino Yukawa interactions $h=V_{R}^{\nu \dagger} \operatorname{diag}\left(h_{1}, h_{2}, h_{3}\right) V_{L}^{\nu}$
- CP asymmetry parametrized by (orthogonal parametrization)

$$
\begin{aligned}
& m=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) \\
& M=\operatorname{diag}\left(M_{1}, M_{2}, M_{3}\right) \\
& R=v M^{-1 / 2} h U m^{-1 / 2} \quad \text { (RH neutrino masses) } \\
& h h^{\dagger} v^{2}=V_{R}^{\nu \dagger} \operatorname{diag}\left(h_{1}^{2}, h_{2}^{2}, h_{3}^{2}\right) V_{R}^{\nu} v^{2}=M^{1 / 2} R m R^{\dagger} M^{1 / 2}
\end{aligned}
$$

- lepton number asymmetry (in one-flavor approximation)

$$
\epsilon_{1}=\sum_{\alpha=e, \mu, \tau} \epsilon^{\alpha \alpha}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{\rho} m_{\rho}^{2} R_{1 \rho}^{2}\right)}{\sum_{\beta} m_{\beta}\left|R_{1 \beta}\right|^{2}}
$$

Connection to Low Energy Observables

- Flavor matters?
leptogenesis at $T \sim M_{1}<10^{12} \mathrm{GeV}$:
three flavors distinguishable (different $\mathrm{T}_{\text {eq }}$) non-universal wash-out factors
- asymmetry associated with each flavor

$$
\epsilon_{\alpha}=-\frac{3 M_{1}}{16 \pi v^{2}} \frac{\operatorname{Im}\left(\sum_{\beta \rho} m_{\beta}^{1 / 2} m_{\rho}^{3 / 2} U_{\alpha \beta}^{*} U_{\alpha \rho} R_{1 \beta} R_{1 \rho}\right)}{\sum_{\beta} m_{\beta}\left|R_{1 \beta}\right|^{2}}
$$

Sources of CPViolation

- Manifestations of CP violation
- weak scale CPV (kaon, B-meson, neutrino oscillation, ...)
- cosmological BAU
- strong CP problem
\Rightarrow can they come from a common origin??
- Explicit CP violation
- complexYukawa couplings
- Spontaneous CP violation
- complexVEV
- domain walls?
- sufficiently large phases?

Minimal Left-Right Model

Pati, Salam, I974;
Mohapatra, Pati, I975;
Senjanovic, Mohapatra, I975

- gauge symmetry: $\quad \operatorname{SU}(3)_{C} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \times P$

$$
\rightarrow S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \quad Q=T_{3, L}+T_{3, R}+\frac{1}{2}(B-L)
$$

- particle content:
- fermions: $\quad Q_{i L L}=\binom{u}{d}_{i, L} \sim(1 / 2,0,1 / 3) \quad Q_{i, R}=\binom{u}{d}_{i, R} \sim(0,1 / 2,1 / 3)$

$$
L_{i, L}=\left(\begin{array}{l}
e \\
v \\
v
\end{array}\right) \sim(1 / 2,0,-1) \quad L_{i, R}=\binom{e}{v}_{i, R} \sim(0,1 / 2,-1)
$$

- Higgs sector:

$$
\begin{aligned}
& \Phi=\left(\begin{array}{ll}
\phi_{1}^{0} & \phi_{2}^{+} \\
\phi_{1}^{-} & \phi_{2}^{0}
\end{array}\right) \sim(1 / 2,1 / 2,0) \\
& \Delta_{L}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \Delta_{L}^{+} & \Delta_{L}^{++} \\
\Delta_{L}^{0_{L}^{0}} & -\frac{1}{\sqrt{2}} \Delta_{L}^{+}
\end{array}\right) \sim(1,0,+2) \quad \Delta_{R}=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} \Delta_{R}^{+} & \Delta_{R}^{++} \\
\Delta_{R}^{0} & -\frac{1}{\sqrt{2}} \Delta_{R}^{+}
\end{array}\right) \sim(0,1,+2)
\end{aligned}
$$

- Under P:

$$
\psi_{L} \leftrightarrow \psi_{R}, \quad \Delta_{L} \leftrightarrow \Delta_{R}, \quad \Phi \leftrightarrow \Phi^{+}
$$

Minimal Left-Right Model

- In general,

$$
\langle\Phi\rangle=\left(\begin{array}{cc}
\kappa e^{i \sigma_{K}} & 0 \\
0 & \kappa^{\prime} e^{i \alpha_{K^{\prime}}}
\end{array}\right),\left\langle\Delta_{L}\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
v_{L} e^{i \alpha_{L}} & 0
\end{array}\right),\left\langle\Delta_{R}\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
v_{R} e^{i \alpha_{R}} & 0
\end{array}\right)
$$

- To get realistic SM gauge boson masses:

$$
\kappa^{2}+\kappa^{\prime 2} \cong 2 m_{W}^{2} / g^{2} \cong(174 G e V)^{2}
$$

- two tripletVEV's are related

$$
v_{L}=\beta \frac{\kappa^{2}}{v_{R}}
$$

so U_{L} is seesaw suppressed
Small neutrino masses: $\mathrm{U}_{\mathrm{R}} \sim 10^{15} \mathrm{GeV}$; $\mathrm{UL}^{\sim} \sim 0.0 \mathrm{I} \mathrm{eV}$
\Rightarrow precision EW constraints OK

Two Intrinsic CP Phases

- The Lagrangian is invariant under two unitary transformations

$$
U_{L}=\left(\begin{array}{cc}
e^{i \gamma_{L}} & 0 \\
0 & e^{-i \gamma_{L}}
\end{array}\right), \quad U_{R}=\left(\begin{array}{cc}
e^{i \gamma_{R}} & 0 \\
0 & e^{-i \gamma_{R}}
\end{array}\right)
$$

- under U_{L} and U_{R} :

$$
\begin{aligned}
\psi_{L} \rightarrow U_{L} \psi_{L}, \psi_{R} & \rightarrow U_{R} \psi_{R} \quad \Phi \rightarrow U_{R} \Phi U_{L}^{+}, \Delta_{L} \rightarrow U_{L}^{*} \Delta_{L} U_{L}^{+}, \Delta_{R} \rightarrow U_{R}^{*} \Delta_{R} U_{R}^{+} \\
\kappa & \rightarrow \kappa e^{-i\left(\gamma_{L}-\gamma_{R}\right)}, \kappa^{\prime} \rightarrow \kappa^{\prime} e^{i\left(\gamma_{L}-\gamma_{R}\right)} \\
v_{L} & \rightarrow v_{L} e^{-2 i \gamma_{L}}, \quad v_{R} \rightarrow v_{R} e^{-2 i \gamma_{R}}
\end{aligned}
$$

- rotate away two of the four CP phases: only two physical phases remain

$$
\langle\Phi\rangle=\left(\begin{array}{cc}
\kappa & 0 \\
0 & \kappa^{\prime} e^{i \alpha_{\kappa^{\prime}}}
\end{array}\right),\left\langle\Delta_{L}\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
v_{L} e^{i \alpha_{L}} & 0
\end{array}\right),\left\langle\Delta_{R}\right\rangle=\left(\begin{array}{cc}
0 & 0 \\
v_{R} & 0
\end{array}\right)
$$

- scalar potential

Yukawa Interactions

- quarks: $-L_{q}=\bar{Q}_{i, R}\left(F_{i j} \Phi+G_{i j} \bar{\Phi}\right) Q_{j, L}+$ h.c. where $\bar{\Phi}=\tau_{2} \Phi^{*} \tau_{2}$
- mass matrices $M_{u}=F_{i j} K+G_{i j} K^{\prime} e^{-i a_{\kappa_{k}}}, \quad M_{d}=F_{i j} \kappa^{\prime} e^{i \alpha_{\kappa^{\prime}}}+G_{i j} K$
- $\mathrm{SCPV} \Rightarrow$ all Yukawa coupling constants real
- $\alpha_{\kappa^{\prime}}$ responsible for all CPV in quark sector
- to suppress FCNC
\Rightarrow large hierarchy between two doublet VEV's

$$
\kappa / \kappa^{\prime} \cong m_{t} / m_{b} \gg 1
$$

Yukawa Interactions

- lepton sector

$$
-L_{l}=\bar{L}_{i, R}\left(P_{i j} \Phi+R_{i j} \bar{\Phi}\right) L_{j, L}+f_{i j}\left(L_{i, L}^{T} \Delta_{L} L_{j, L}+L_{i, R}^{T} \Delta_{R} L_{j, R}\right)+\text { h.c. }
$$

- mass matrices

$$
\begin{aligned}
& M_{e}=P_{i j} \kappa^{\prime} e^{i \alpha_{\kappa^{\prime}}}+R_{i j} \kappa \\
& M_{v}^{\text {Dirac }}=P_{i j} \kappa+R_{i j} \kappa^{\prime} e^{-i \alpha_{\kappa^{\prime}}}, \quad M_{v}^{L L}=f_{i j} v_{L} e^{i \alpha_{L}}, M_{v}^{R R}=f_{i j} v_{R} \\
& \left(\begin{array}{ll}
M_{L L} & M_{L R}^{T} \\
M_{L R} & M_{R R}
\end{array}\right)
\end{aligned}
$$

$$
S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \quad \xrightarrow{v_{\mathrm{R}}} S U(2)_{L} \times U(1)_{Y} \Rightarrow\left(\begin{array}{cc}
0 & 0 \\
0 & f v_{R}
\end{array}\right)
$$

$$
\xrightarrow{v_{\mathrm{ew}}} U(1)_{E M} \quad \Rightarrow\left(\begin{array}{cc}
f v_{L} & h v_{e w} \\
h v_{e w} & f v_{R}
\end{array}\right)
$$

Yukawa Interactions

- lepton sector

$$
\begin{aligned}
& \quad M_{e}=P_{i j} \kappa^{\prime} e^{i \alpha_{\kappa^{\prime}}}+R_{i j} \kappa \\
& \quad M_{v}^{D i r a c}=P_{i j} \kappa+R_{i j} \kappa^{\prime} e^{-i \alpha_{\kappa^{\prime}}}, \quad M_{v}^{L L}=f_{i j} v_{L} e^{i \alpha_{L}}, M_{v}^{R R}=f_{i j} v_{R}, \\
& M_{v}^{I}=\left(M_{v}^{\text {Dirac }}\right)^{T}\left(M_{v}^{R R}\right)^{-1}\left(M_{v}^{\text {Dirac }}\right)=\left(\kappa P+\kappa^{\prime} e^{-i \alpha_{\kappa^{\prime}}} R\right)^{T}\left(v_{R} f\right)^{-1}\left(\kappa P+\kappa^{\prime} e^{-i \alpha_{\kappa^{\prime}}} R\right) \approx \frac{v_{L}}{\beta} P^{T} f^{-1} P \\
& M_{v}^{I I}=v_{L} e^{i \alpha_{L}} f \\
& \left.M_{v}^{e f f}=M_{v}^{I I}-M_{v}^{I} \approx\left(f e^{i \alpha_{L}}\right)-\frac{1}{\beta} P^{T} f^{-1} P\right) v_{L}
\end{aligned}
$$

CPV in quark sector \leftrightarrow CPV in lepton sector

- through phase $\alpha_{k^{\prime}}$
- appear at sub-leading $O\left(\kappa^{\prime} / \kappa\right)$
- weak connection

Leptonic CPV Processes

- MNS matrix

$$
U_{M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i \alpha_{21} / 2} \\
\\
\\
\\
e^{i \alpha_{31} / 2}
\end{array}\right)
$$

- three low energy phases $\delta, \alpha_{21}, \alpha_{31}$: functions of α_{L}
- neutrino oscillations

$$
\begin{gathered}
P\left(v_{\alpha} \rightarrow v_{\beta}\right)=\delta_{\alpha \beta}-4 \sum_{i>j} \operatorname{Re}\left(U_{\alpha i} U_{\beta j} U_{a j}^{*} U_{\beta i}^{*}\right) \sin ^{2}\left(\Delta m_{i j}^{2} \frac{L}{4 E}\right)+2 \sum_{i>j} J_{C P} \sin ^{2}\left(\Delta m_{i j}^{2} \frac{L}{4 E}\right) \\
J_{C P}=-\frac{\operatorname{Im}\left(H_{12} H_{23} H_{31}\right)}{\Delta m_{21}^{2} \Delta m_{32}^{2} \Delta m_{31}^{2}} \propto \sin \alpha_{L}, \quad H \equiv M_{v}^{\text {eff }}\left(M_{v}^{e f f}\right)^{+}
\end{gathered}
$$

- neutrinoless double beta decay

$$
\begin{aligned}
\left|\left\langle m_{e e}\right\rangle\right|^{2}= & m_{1}^{2}\left|U_{e 1}\right|^{4}+m_{2}^{2}\left|U_{e 2}\right|^{4}+m_{3}^{2}\left|U_{e 3}\right|^{4}+2 m_{1} m_{2}\left|U_{e 1}\right|^{2}\left|U_{e 2}\right|^{2} \cos \alpha_{21} \\
& +2 m_{1} m_{3}\left|U_{e 1}\right|^{2}\left|U_{e 3}\right|^{2} \cos \alpha_{31}+2 m_{2} m_{3}\left|U_{e 2}\right|^{2}\left|U_{e 3}\right|^{2} \cos \left(\alpha_{31}-\alpha_{21}\right)
\end{aligned}
$$

Leptogenesis in LR Model

- two ways to generate lepton number asymmetry
v decays of $\mathrm{N}_{1}: \quad N_{1} \rightarrow \ell+H^{*}, \quad \varepsilon=\frac{\Gamma\left(N_{1} \rightarrow \ell+H^{*}\right)-\Gamma\left(N_{1} \rightarrow \bar{\ell}+H\right)}{\Gamma\left(N_{1} \rightarrow \ell+H^{*}\right)+\Gamma\left(N_{1} \rightarrow \bar{\ell}+H\right)}$
v decays of $\Delta_{L}: \quad \Delta_{L}^{*} \rightarrow \ell+\ell, \quad \varepsilon=\frac{\Gamma\left(\Delta_{L}^{*} \rightarrow \ell+\ell\right)-\Gamma\left(\Delta_{L} \rightarrow \bar{\ell}+\bar{\ell}\right)}{\Gamma\left(\Delta_{L}^{*} \rightarrow \ell+\ell\right)+\Gamma\left(\Delta_{L} \rightarrow \bar{\ell}+\bar{\ell}\right)}$
- naturally $M_{\Delta_{L}}>M_{I} \Rightarrow N_{\text {I }}$ decays dominate
- contributions to the asymmetry

$$
\mathrm{M}_{D}=O_{R} M_{D}
$$

$$
\begin{aligned}
& \varepsilon=\frac{3}{16 \pi}\left(\frac{M_{1}}{v^{2}}\right) \frac{\operatorname{Im}\left(\mathrm{M}_{D}\left(M_{v}^{I}\right)^{*} \mathrm{M}_{D}^{T}\right)_{11}}{\left(\mathrm{M}_{D} \mathrm{M}_{D}^{+}\right)_{11}}=0 \\
& \varepsilon=\frac{3}{16 \pi}\left(\frac{M_{1}}{v^{2}}\right) \frac{\operatorname{Im}\left(\mathrm{M}_{D}\left(M_{v}^{I I}\right)^{*} \mathrm{M}_{D}^{T}\right)_{11}}{\left(\mathrm{M}_{D} \mathrm{M}_{D}^{+}\right)_{11}} \propto \sin \alpha_{L}
\end{aligned}
$$

Independent of the choice of unitary transformation $U_{L, R}$

Leptogenesis in LR Model

- out-of-equilibrium condition

$$
\frac{\Gamma}{\left.H\right|_{T=M_{1}}}=\frac{M_{P l}}{(1.7)(32 \pi) \sqrt{g_{*}} v^{2}} \cdot \frac{\left(\mathrm{M}_{D} \mathrm{M}_{D}^{+}\right)_{11}}{M_{1}} \approx \frac{1}{(0.01 e V)} \cdot \frac{\left(\mathrm{M}_{D} \mathrm{M}_{D}^{+}\right)_{11}}{M_{1}}<1
$$

$\Rightarrow M_{1}$ cannot be to light: typically requires $M_{1}>2 \times 10^{9} \mathrm{GeV}$
\Rightarrow RH neutrino masses cannot too hierarchical
$\Delta \mathrm{L} \rightarrow \Delta \mathrm{B}:$
observed $\quad n_{b} / s \sim 10^{-10} \Rightarrow \varepsilon \sim 10^{-8}$

Specific Flavor Ansatz for Bi-large Mixing

$$
M_{v}^{e f f}=\left(f e^{i \alpha_{L}}-\frac{1}{\beta} P^{T} f^{-1} P\right) v_{L}
$$

- assume Dirac neutrino mass matrix ~ up quark mass matrix

$$
P \propto\left(\begin{array}{lll}
m_{u} / m_{t} & & \\
& m_{c} / m_{t} & \\
& & 1
\end{array}\right)
$$

- bi-large neutrino mixing can be accommodated with

$$
f_{i j}=\left(\begin{array}{ccc}
t^{2} & t & -t \\
t & 1 & 1 \\
-t & 1 & 1
\end{array}\right) \quad \frac{1}{\beta} P^{T} f^{-1} P=s\left(\begin{array}{ccc}
0 & \frac{1}{t} \frac{m_{u} m_{c}}{m_{t}^{2}} & -\frac{1}{t} \frac{m_{u}}{m_{t}} \\
\frac{1}{\frac{m_{u}}{m_{c}}} \frac{0}{m_{t}^{2}} & 0 & \frac{m_{c}}{m_{t}} \\
-\frac{1}{t} \frac{m_{u}}{m_{t}} & \frac{m_{c}}{m_{t}} & 0
\end{array}\right)
$$

- may arise from $\mathrm{U}(\mathrm{I})$ horizontal symmetry
- deviation from maximal atmospheric mixing negligible
- Leptonic CPV: $J_{C P}=-\frac{2 s t^{2}\left(1-t^{2}\right) v_{L}^{6}}{\Delta m_{21}^{2} \Delta m_{31}^{2} \Delta m_{32}^{2}}\left(\frac{m_{u}}{m_{t}}\right) \sin \alpha_{L}$

Results

- 3 model parameters: $\mathrm{t}, \mathrm{s}, \alpha_{\mathrm{L}}$
- experimental values for oscillation parameters

$$
\begin{aligned}
& \text { post - Neutrino2004: }(1 \sigma) \\
& \Delta m_{\text {atm }}^{2}=(1.9-3.0) \times 10^{-3} \mathrm{eV}^{2}, \\
& \Delta m_{\text {sol }}^{2}=(7.9-8.5) \times 10^{-5} \mathrm{eV}^{2} \\
& \sin ^{2} 2 \theta_{\text {atm }}>0.9 \\
& \tan ^{2} \theta_{\text {sol }}=(0.35-0.44)
\end{aligned}
$$

Results

- predict small θ_{13}
- in large Jcp regime:
strong correlation between J_{cp} and $<\mathrm{m}_{\mathrm{ee}}>$
- Jcp: $\left(0-10^{-3}\right)$
- <mee ${ }_{\text {ee }}\left(10^{-4} \sim 10^{-2}\right) \mathrm{eV}$; current limit $\sim 0.1 \mathrm{eV}$
M.-C.C \& Mahanthappa, Phys. Rev. D7I, 03500 I (2005)

Results

observed $\mathrm{BAU} \Rightarrow \mathrm{J}_{\mathrm{cp}} \sim 10^{-5}$

- symmetry between $2 n d$ \& 4th quadrants
- in large Jcp regime:

strong correlation between

$J_{c p}$ and $\Delta \epsilon$ '

- total amount of lepton number asymmetry

$$
\varepsilon=10^{-2} \times \Delta \varepsilon^{\prime}<\left(10^{-4}-10^{-5}\right)
$$

- no wash-out

$$
\begin{aligned}
& \frac{\Gamma}{H \mathrm{~T}_{T=M_{1}}} \approx \frac{1}{(0.01 e V)} \cdot \frac{\left(\mathrm{M}_{D} \mathrm{M}_{D}^{+}\right)_{11}}{M_{1}}<1 \\
& \frac{\left(\mathrm{M}_{D} \mathrm{M}_{D}^{+}\right)_{11}}{M_{1}} \sim\left(\frac{m_{c}}{m_{t}}\right)^{2} v_{L}=10^{-7} e V!!! \\
& v_{R} \sim\left(10^{12-13}\right) \mathrm{GeV}, \quad M_{1} \sim 0.1 v_{R}
\end{aligned}
$$

Flavor Ansatz II

- assume Dirac neutrino mass matrix ~ up quark mass matrix

$$
P \propto\left(\begin{array}{lll}
m_{u} / m_{t} & & \\
& m_{c} / m_{t} & \\
& & 1
\end{array}\right)
$$

- bi-large neutrino mixing can be accommodated with

$$
\begin{aligned}
& f_{i j}=\left(\begin{array}{ccc}
A & B & -B \\
B & D+\frac{A}{2} & D-\frac{A}{2} \\
-B & D-\frac{A}{2} & D+\frac{A}{2}
\end{array}\right) \quad \mathrm{A}=\frac{1}{2}\left(f_{1}^{0}+f_{2}^{0}\right), B=\frac{1}{2 \sqrt{2}}\left(f_{2}^{0}-f_{1}^{0}\right), D=\frac{1}{2} f_{3}^{0} \\
& P^{T} f^{-1} P \sim\binom{\quad}{\quad x}, x=s\left(\frac{1}{f_{1}^{0}}+\frac{1}{f_{2}^{0}}+\frac{1}{f_{3}^{0}}\right) \quad M_{v}^{e f f}=\left(f e^{i \alpha_{L}}-\frac{1}{\beta} P^{T} f^{-1} P\right) v_{L}
\end{aligned}
$$

- may arise from ($L_{e}-L_{\mu}-L_{T}$) horizontal symmetry
- inverted hierarchy
- deviation from maximal atmospheric mixing sizable
- Leptonic CPV: $J_{C P}=-\frac{\left(f_{2}^{0}-f_{1}^{0}\right)^{3}\left(f_{3}^{0}-f_{2}^{0}\right)\left(f_{3}^{0}-f_{1}^{0}\right) v_{L}^{6}}{\Delta m_{21}^{2} \Delta m_{31}^{2} \Delta m_{32}^{2}} x \sin \alpha_{L}$

Results

Scalar Potential

- scalar potential $\quad V=V_{\Phi}+V_{\Delta}+V_{\Phi \Delta}$

$$
\begin{aligned}
V_{\Phi}= & -\mu^{2} \operatorname{Tr}\left(\Phi^{\dagger} \Phi\right)-\mu_{2}^{2}\left[\operatorname{Tr}\left(\tilde{\Phi} \Phi^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\Phi}^{\dagger} \Phi\right)\right] \\
& \left.+\lambda_{1}\left[\operatorname{Tr}\left(\Phi \Phi^{\dagger}\right)\right]^{2}+\lambda_{2}\left[\left[\operatorname{Tr}\left(\tilde{\Phi} \Phi^{\dagger}\right)\right]^{2}+\operatorname{Tr}\left(\tilde{\Phi}^{\dagger} \Phi\right)\right]^{2}\right] \\
& +\lambda_{3}\left[\operatorname{Tr}\left(\tilde{\Phi} \Phi^{\dagger}\right) \operatorname{Tr}\left(\tilde{\Phi}^{\dagger} \Phi\right)\right]+\lambda_{4}\left[\operatorname{Tr}\left(\Phi \Phi^{\dagger}\right)\left[\operatorname{Tr}\left(\tilde{\Phi} \Phi^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\Phi}^{\dagger} \Phi\right)\right]\right] \\
V_{\Delta}= & \left.-\mu_{3}^{2}\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)+\Delta_{R} \Delta_{R}^{\dagger}\right)\right]+\rho_{1}\left[\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)\right]^{2}+\left[\operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)\right]^{2}\right] \\
& +\rho_{2}\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}\right) \operatorname{Tr}\left(\Delta_{L}^{\dagger} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\Delta_{R} \Delta_{R}\right) \operatorname{Tr}\left(\Delta_{R}^{\dagger} \Delta_{R}^{\dagger}\right)\right] \\
& +\rho_{3}\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right) \operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)\right]+\rho_{4}\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}\right) \operatorname{Tr}\left(\Delta_{R}^{\dagger} \Delta_{R}^{\dagger}\right)+\operatorname{Tr}\left(\Delta_{L}^{\dagger} \Delta_{L}^{\dagger}\right) \operatorname{Tr}\left(\Delta_{R} \Delta_{R}\right)\right] \\
V_{\Phi \Delta}= & \alpha_{1}\left[\operatorname{Tr}\left(\Phi \Phi^{\dagger}\right)\left[\operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)\right]\right] \\
& \left.+\alpha_{2}\left[\operatorname{Tr}\left(\Phi \tilde{\Phi}^{\dagger}\right) \operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)+\operatorname{Tr}\left(\Phi^{\dagger} \tilde{\Phi}\right) \operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)\right]\right] \\
& \left.+\alpha_{2}^{*}\left[\operatorname{Tr}\left(\Phi^{\dagger} \tilde{\Phi}\right) \operatorname{Tr}\left(\Delta_{R} \Delta_{R}^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\Phi}^{\dagger} \Phi\right) \operatorname{Tr}\left(\Delta_{L} \Delta_{L}^{\dagger}\right)\right]\right] \\
& +\alpha_{3}\left[\operatorname{Tr}\left(\Phi \Phi^{\dagger} \Delta_{L} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\Phi^{\dagger} \Phi \Delta_{R} \Delta_{R}^{\dagger}\right)\right]+\beta_{1}\left[\operatorname{Tr}\left(\Phi \Delta_{R} \Phi^{\dagger} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\Phi^{\dagger} \Delta_{L} \Phi \Delta_{R}^{\dagger}\right)\right] \\
& +\beta_{2}\left[\operatorname{Tr}\left(\tilde{\Phi} \Delta_{R} \Phi^{\dagger} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\Phi}^{\dagger} \Delta_{L} \Phi \Delta_{R}^{\dagger}\right)\right]+\beta_{3}\left[\operatorname{Tr}\left(\Phi \Delta_{R} \tilde{\Phi}^{\dagger} \Delta_{L}^{\dagger}\right)+\operatorname{Tr}\left(\Phi^{\dagger} \Delta_{L} \tilde{\Phi} \Delta_{R}^{\dagger}\right)\right]
\end{aligned}
$$

Scalar Potential

- minimization conditions

$$
\begin{gathered}
\left(2 \rho_{1}-\rho_{3}\right) v_{R} v_{L}=\beta_{1} \kappa \kappa^{\prime} \cos \left(\alpha_{L}-\alpha_{\kappa^{\prime}}\right)+\beta_{2} \kappa^{2} \cos \alpha_{L}+\beta_{3} \kappa^{\prime 2} \cos \left(\alpha_{L}-2 \alpha_{\kappa^{\prime}}\right) \\
0=\beta_{1} \kappa \kappa^{\prime} \sin \left(\alpha_{L}-\alpha_{\kappa^{\prime}}\right)+\beta_{2} \kappa^{2} \sin \alpha_{L}+\beta_{3} \kappa^{\prime 2} \sin \left(\alpha_{L}-2 \alpha_{\kappa^{\prime}}\right) \\
0=v_{R} v_{L}\left[2 \kappa \kappa^{\prime}\left(\beta_{2}+\beta_{3}\right) \sin \left(\alpha_{L}-\alpha_{\kappa^{\prime}}\right)+\beta_{1}\left[\kappa^{2} \sin \alpha_{L}+\kappa^{\prime 2} \sin \left(\alpha_{L}-2 \alpha_{\kappa^{\prime}}\right)\right]\right] \\
+\kappa \kappa^{\prime} \sin \alpha_{\kappa^{\prime}}\left[\alpha_{3}\left(v_{L}^{2}+v_{R}^{2}\right)+\left(4 \lambda_{3}-8 \lambda_{2}\right)\left(\kappa^{2}-\kappa^{\prime 2}\right)\right]
\end{gathered}
$$

- CP phase in quark sector: 3rd condition

$$
\begin{aligned}
\sin \alpha_{\kappa^{\prime}} & \sim\left(\beta / \alpha_{3}\right)\left(v_{L} / v_{R}\right) \\
& \Rightarrow \text { suppressed by high } \mathrm{U}_{\mathrm{R}}
\end{aligned}
$$

- CP phase in lepton sector: α_{L}
\Rightarrow tuning of $\mathrm{O}\left(\kappa^{\prime} / \kappa\right) \sim\left(\mathrm{m}_{\mathrm{b}} / \mathrm{m}_{\mathrm{t}}\right) \sim 0.0 \mathrm{I}$ (from FCNC constraints),
$\alpha_{\mathrm{L}} \sim \mathrm{O}(\mathrm{I})$ can be generated

Low Seesaw Scale

M.-C.C \& Mahanthappa, Phys. Rev. D75, 015001 (2007)

- with an addition $\mathrm{U}(\mathrm{I})_{s}$ symmetry: $\mathrm{SU}(2)_{\mathrm{R}}$ breaking scale can be significantly lower
- $\mathrm{U}(\mathrm{I})_{s}$ broken by $\langle\mathrm{S}>$; $\mathrm{Q}(\mathrm{S})=+\mathrm{I}$
- $\mathrm{U}(\mathrm{I})_{\mathrm{s}}$ forbids dim-4 operators
- mass terms arise only through operators with higher dimensionality

$$
\omega=\frac{\langle s\rangle}{M_{S}}<1
$$

$$
\begin{aligned}
& M_{\nu_{D}}=P_{i j} \kappa \omega^{\left|Q\left(L_{L}\right)-Q\left(L_{R}\right)-Q(\Phi)\right|}+R_{i j} \kappa^{\prime} e^{-i \alpha_{\kappa^{\prime}}} \omega^{\left|Q\left(L_{L}\right)-Q\left(L_{R}\right)+Q(\Phi)\right|} \\
& M_{e}=P_{i j} \kappa^{\prime} e^{i \alpha_{\kappa^{\prime}}} \omega^{\left|Q\left(L_{L}\right)-Q\left(L_{R}\right)-Q(\Phi)\right|}+R_{i j} \kappa \omega^{\left|Q\left(L_{L}\right)-Q\left(L_{R}\right)+Q(\Phi)\right|} \\
& M_{\nu}^{R R}=f_{i j} v_{R} \omega^{\left|Q\left(\Delta_{R}\right)+2 Q\left(L_{R}\right)\right|}, \quad M_{\nu}^{L L}=f_{i j} v_{L} e^{i \alpha_{L}} \omega^{\left|Q\left(\Delta_{L}\right)+2 Q\left(L_{L}\right)\right|}
\end{aligned}
$$

Low Seesaw Scale

M.-C.C \& Mahanthappa,

Phys. Rev. D75, 0 I 500 I (2007)

- induced tripletVEV

$$
\begin{aligned}
& v_{L} \simeq \beta \frac{\kappa^{2}}{v_{R}}, \\
& \beta \sim \beta^{\prime} \cdot \operatorname{Max}\left\{\omega^{\left|Q\left(\Delta_{R}\right)-Q\left(\Delta_{L}\right)-2 Q(\Phi)\right|}, r \omega^{\left|Q\left(\Delta_{R}\right)-Q\left(\Delta_{L}\right)\right|}, r^{2} \omega^{\left|Q\left(\Delta_{R}\right)-Q\left(\Delta_{L}\right)+2 Q(\Phi)\right|}\right\},
\end{aligned}
$$

- $\mathrm{U}(\mathrm{I})$ charge assignment consistent with LR symmetry:

$$
\begin{array}{rlrl}
Q(\Phi) & =-Q(\tilde{\Phi})=2, Q\left(\Delta_{L}\right)=-Q\left(\Delta_{R}\right)=4, & Q\left(L_{L}\right)=-Q\left(L_{R}\right)=-2, \\
v_{L} v_{R} & \simeq \beta^{\prime} \kappa^{2} \omega^{8}, & M_{\nu}^{e f f} & =M_{\nu}^{L L}-M_{\nu_{D}}\left(M_{\nu}^{R R}\right)^{-1} M_{\nu_{D}}^{T} \\
M_{e} & \simeq R_{i j} \kappa \omega^{2}+\mathcal{O}\left(\omega^{6}\right), & & \\
M_{\nu_{D}} & \simeq v_{L}\left[f_{i j} e^{i \alpha_{L}}-s R_{i j} f_{i j}^{-1} e^{-i \alpha_{\kappa^{\prime}}} \omega^{4} \omega^{-2 i \alpha_{\kappa^{\prime}}}\right] \\
M_{\nu}^{L L} & \left.=f_{i j} v_{L} e^{i \alpha_{L}}, \quad \omega_{\nu}^{R}\right), & &
\end{array}
$$

with $\omega \sim 0.1$, $U_{L} \sim(0.0 \mathrm{I}-0.1) \mathrm{eV} \Rightarrow \mathrm{U}_{\mathrm{R}} \sim 10^{6} \mathrm{GeV}$
'quark' phase α_{k} now affect leptonic CPV at dominant order

Electron EDM

$\mathrm{U}_{\mathrm{R}} \sim 10^{6} \mathrm{GeV} \Rightarrow \mathrm{d}_{\mathrm{e}} \sim 10^{-32} \mathrm{e}-\mathrm{cm}$ can be obtained (within reach of next generation of experiments) current limit: $d_{e}<1.67 \times 10^{-27} \mathrm{e}-\mathrm{cm}$ at 90% CF

Results

$$
J_{C P} \propto \sin \left(\alpha_{L}+\alpha_{\kappa^{\prime}}\right) \quad \epsilon^{\Delta_{L}} \propto M_{R_{1}} \sin \left(\alpha_{L}+2 \alpha_{\kappa^{\prime}}\right)
$$

Results

$$
\begin{aligned}
& \epsilon=\epsilon^{\Delta_{L}} \sim 10^{-8} \Delta \epsilon^{\prime} \sim O\left(10^{-9}\right) \\
& n_{b} / s=(0.87 \pm 0.04) \times 10^{-10}, \\
& \frac{n_{b}}{s} \simeq-\frac{24+4 n_{H}}{66+13 n_{H}} \epsilon \eta Y_{N_{1}}^{\mathrm{eq}}\left(T \gg M_{1}\right), \quad n_{b} / s \simeq-1.38 \times 10^{-3} \epsilon \eta .
\end{aligned}
$$

sufficient BAU can be obtained with efficiency factor 10-100

Giudice, Notari, Raidal, Riotto \& Strumia, Nucl. Phys. B685, 89 (2004)

TeV Scale Seesaw with U(I)NA

- $S M \times U(I)_{N A}+N V_{R}$
- U(I) NA broken by < $\phi>$
M.-C.C, de Gouvea, Dobrescu

Phys. Rev. D75, 055009 (2007)

- forbid usual dim-4 (Dirac) \& dim-5 (HHLL) operators for neutrino mass

$$
m_{L L} \sim \frac{H H L L}{M} \rightarrow M \sim 10^{14} \mathrm{GeV}
$$

- neutrino masses generated by operators with high dimensionality

$$
\begin{gathered}
m_{L L} \sim\left(\frac{\langle\phi\rangle}{M}\right)^{p} \frac{H H L L}{M} \rightarrow M \sim T e V, \\
\\
\hdashline
\end{gathered}
$$

- charges of different fermions related through anomaly cancellation conditions \Rightarrow predict flavor mixing

$$
\begin{array}{ll}
{\left[\mathrm{SU}(3)_{c}\right]^{2} \mathrm{U}(\mathrm{I})_{v}} & \mathrm{U}(\mathrm{I})_{r}\left[\mathrm{U}(\mathrm{I})_{v}\right]^{2} \\
{\left[\mathrm{SU}(2)_{\mathrm{L}}\right]^{2} \mathrm{U}(\mathrm{I})_{v}} & \mathrm{U}(\mathrm{I})_{v} \text { gauge-gravitational anomaly } \\
{[\mathrm{U}(\mathrm{I}) \mathrm{r}]^{2} \mathrm{U}(\mathrm{I})_{v}} & {\left[\mathrm{U}(\mathrm{I})_{v}\right]^{3} \Rightarrow \text { cubic equation }}
\end{array}
$$

"Leptocratic" Model

- with N=3 RH neutrinos, rational solutions for charges
- UV cutoff is at \sim a TeV
- quark charges flavor blind; lepton charges flavor dependent
- neutrinos can either be Dirac (only Dirac masses are allowed) or Majorana (Dirac, LH Majorana and RH Majorana masses are all allowed)
- bi-large mixing pattern can arise
- exist light quasi-sterile neutrinos, might be relevant for cosmology

TeV Scale Seesaw with U(I)NA

- through couplings to Z^{\prime} : can probe neutrino sector at colliders generation dependent lepton charges

Other Attempts

- $\mathrm{SM}+\mathrm{D}^{0}$ (vectorial quark) +S (singlet scalar) Branco, Parada, Rebelo (2003)

$$
\begin{array}{ll}
\left\langle\phi^{0}\right\rangle=\frac{v}{\sqrt{2}}, \quad\langle S\rangle=\frac{V \exp (i \alpha)}{\sqrt{2}} \\
\left(f_{q} S+f_{q}^{\prime} S^{*}\right) \overline{D_{L}^{0}} d_{R}^{0}+\tilde{M} \overline{D_{L}^{0}} D_{R}^{0} & \rightarrow \text { quark CPV } \\
\frac{1}{2} \nu_{R}^{0 T} C\left(f_{\nu} S+f_{\nu}^{\prime} S^{*}\right) \nu_{R}^{0} & \rightarrow \text { leptonic CPV }
\end{array}
$$

- \quad SCPV in $\mathrm{SO}(10): \quad$ Achiman (2004)

$$
\begin{aligned}
& \langle 126\rangle \text { complex: break (B-L) } \quad \bar{\Delta}=<\bar{\Sigma}(1,1,0)\rangle=\frac{\sigma}{\sqrt{2}} e^{i \alpha} \\
& Y_{\ell}^{i j} \nu_{R}^{i} \bar{\Delta} \nu_{R}^{j}
\end{aligned}
$$

- no symmetry reason why <S> is the only complexVEV

Quantum Boltzmann Equations

Buchmuller, Fredenhagen, 2000; Simone, Riotto 2007; Lindner, Muller 2007

- Classical vs Quantum Boltzmann equations:
- collision terms: involving quantum interference
- time evolution: quantum mechanical treatment
- Classical Boltzmann equations:
scattering independent from previous one

$$
\begin{aligned}
& \frac{\partial n_{N_{1}}}{\partial t}=-\left\langle\Gamma_{N_{1}}\right\rangle\left(n_{N_{1}}-n_{N_{1}}^{\text {eq }}\right), \\
& \left\langle\Gamma_{N_{1}}\right\rangle=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{2}} \frac{f_{N_{1}}^{\text {eq }}}{n_{N_{1}}^{e_{1}}} \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{\left|\mathcal{M}\left(N_{1} \rightarrow \ell H\right)\right|^{2}}{2 \omega_{\ell} 2 \omega_{H} \omega_{N_{1}}}(2 \pi) \delta\left(\omega_{N_{1}}-\omega_{\ell}-\omega_{H}\right)
\end{aligned}
$$

- Quantum Boltzmann equations:

Schwinger, I96I; Mahanthappa, I962;
Bakshi, Mahanthappa, I963; Keldysh, I965

- Closed-Time-Path (CTP) formulation for non-equilibrium QFT
- involve time integration for scattering terms
\Rightarrow "memory effects": time-dependent CP asymmetry

$$
\begin{aligned}
& \frac{\partial n_{N_{1}}}{\partial t}=-\left\langle\Gamma_{N_{1}}(t)\right\rangle n_{N_{1}}+\left\langle\widetilde{\Gamma}_{N_{1}}(t)\right\rangle \eta_{N_{1}} \text { eq } \\
& \left\langle\Gamma_{N_{1}}(t)\right\rangle=\int_{0}^{t} d t_{z} \int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3}} \frac{f_{N_{1}}^{e e_{1}} \Gamma_{N_{1}}}{n_{N_{1}}(t),} \\
& \Gamma_{N_{1}}(t)=2 \int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{\left|\mathcal{M}\left(N_{1} \rightarrow \ell H\right)\right|^{2}}{2 \omega_{2} 2 \omega_{H} \omega_{N_{1}}} \cos \left[\left(\omega_{N_{1}}-\omega_{\ell}-\omega_{H}\right)\left(t-t_{z}\right)\right]
\end{aligned}
$$

Quantum Boltzmann Equations

- time scale of Kernel << relaxation time scale $\sim I / \Gamma_{\mathrm{N}}$ Classical Boltzmann eqs \approx Quantum Boltzmann eqs
- In resonant leptogenesis: $\Delta \mathrm{M}=\left(\mathrm{M}_{2}-\mathrm{M}_{1}\right) \sim \Gamma_{\mathrm{N} 2}$

Kernel time scale $\sim \mathrm{I} / \Delta \mathrm{M}>\mathrm{I} / \Gamma_{\mathrm{NI}}$ possible
\Rightarrow quantum Boltzmann eqs important!!

Conclusions

- in minimal LR model: 2 intrinsic phases to account for all CPV in Nature
- LR parity: LH \& RH Majorana mass terms proportional
- pronounced correlation between leptogenesis and low energy leptonic CPV, even without flavor effects
- CPV in quark sector may also be connected to CPV in lepton sector, if seesaw scale is low; such low seesaw scale can be obtained with an additional $U(I)$ symmetry
- Quantum Boltzmann equations?

