Electroweak Baryogenesis and Dark Matter in the nMSSM

David Morrissey

University of Michigan

Based work done in collaboration with Arjun Menon and Carlos Wnagner

Phys. Rev. D **70**, 035005 (2004) hep-ph/0404184

University of Chicago, November 8, 2007

Electroweak Baryogenesis and Dark Matter in the nMSSM

David Morrissey

University of Michigan

Based work done in collaboration with Arjun Menon and Carlos Wagner

Phys. Rev. D **70**, 035005 (2004) hep-ph/0404184

University of Chicago, November 8, 2007

The nMSSM (MNSSM)

The MSSM

- The minimal supersymmetric standard model (MSSM) is a well-motivated extension of the SM.
- Even, so there are good reasons to extend the model.

1. μ problem:

 $W \supset \mu H_1 \cdot H_2,$

 $\mu \sim M_w \sim m_{soft}$ is needed to break the electroweak symmetry. Why not $\mu \sim M_{\rm Pl}$ or M_{GUT} ? (See however [Giudice+Masiero '88].)

2. LEP II Higgs mass bound:

 $m_h > 114 \,{\rm GeV},$

but at tree-level, $m_h^2 < M_Z^2 \cos^2 2\beta$.

3. Electroweak baryogenesis (EWBG):

It is difficult to obtain a strong first-order electroweak phase transition required for EWBG if $m_h > 114 \text{ GeV}$.

Adding a Singlet S

• These difficulties can be avoided by replacing the μ term with a singlet S that gets a VEV,

 $W \supset \lambda S H_1 \cdot H_2.$

• μ problem:

$$\mu_{eff} = \lambda \langle S \rangle.$$

The VEV of S is usually determined by the soft terms.

• Higgs mass:

$$m_{h_{tree}}^2 \le M_Z^2 \left(\cos^2 2\beta + \frac{2\lambda^2}{\overline{g}^2} \sin^2 2\beta \right).$$

• EWBG: A new $S H_1 \cdot H_2$ trilinear soft term can make the electroweak phase transition more strongly first-order.

[Pietroni '92, Davies et al '96, Schmidt+Huber '00, Kang et al '04.]

But...

- The singlet should be charged under an additional symmtry to avoid generating new dimensionful (d < 4) couplings.
- The most popular choice is a \mathbb{Z}_3 symmetry, which yields the superpotential

 $W = \lambda S H_1 \cdot H_2 + \kappa S^3 + (MSSM \text{ terms}).$

This model is called the NMSSM, the Next-to-Minimal Supersymmetric Standard Model.

- When S gets a VEV, the \mathbb{Z}_3 symmetry is broken producing cosmologically unacceptable domain walls.
- The domain wall problem can be avoided by including non-renormalizable operators that break Z₃. However, these generate a large singlet VEV which destabilizes the hierarchy.
 [Abel,Sarkar,+White '95]

A way out: the nMSSM

- Both problems can be avoided by imposing discrete
 R-symmetries on both the superpotential and the Kähler potential.
 [Pangiotakopoulos+Tamvakis '98/'99, Pangiotakopoulos+Pilaftsis '00, Dedes et al '00]
- Such symmetries are broken (softly) in the course of supersymmetry breaking.
- A singlet tadpole can be generated as a result.
- With a \mathbb{Z}_5^R or \mathbb{Z}_7^R discrete symmetry, a singlet tadpole is only generated at six or seven loop order,

$$\delta V \sim \left(\frac{1}{16\pi^2}\right)^n \frac{F_x^2}{M_{\rm Pl}} S + h.c., \text{ with } n = 6,7.$$

For $F_x \sim M_W M_{\text{Pl}}$ as in gravity mediation, this is about electroweak size.

- The resulting model is the nMSSM, the not-quite MSSM. (Also called the MNSSM.)
 - Superpotential:

$$W = \frac{m_{12}^2}{\lambda^2} S + \lambda S H_1 \cdot H_2 + (\text{MSSM matter terms}),$$

- Soft-breaking potential:

$$V_{soft} = t_s(S + h.c.) + m_s^2 |S|^2 + a_\lambda(S H_1 \cdot H_2 + h.c.) + (MSSM terms).$$

- All dimensionful couplings can be taken to be of electroweak size.
- The same superpotential and soft-breaking terms also arise in the low-energy limit of the Fat Higgs model. [Harnik et.al. '03]
- Does the nMSSM help with electroweak baryogenesis?

Electroweak Baryogenesis in the nMSSM

Electroweak Baryogenesis

- EWBG \rightarrow generation of the baryon asymmetry during the electroweak phase transition.
- At high temperatures, the EW symmetry is restored. It is broken as the Universe cools.

 $SU(2)_L \times U(1)_Y \longrightarrow U(1)_{em}.$

- If this phase transition is first order, it proceeds by the nucleation of bubbles of broken phase.
- Baryons are produced by reactions near the bubble walls.

Producing Baryons

- CP violating interactions within the bubble wall produce a net chiral fermion charge outside the bubble.
- Sphaleron transitions convert the chiral charge into baryons.
- The baryons are swept into the bubbles, where they are stable provided

EWBG in the SM and the MSSM

• In the SM and MSSM, the Higgs effective potential has the form:

$$V_{eff} \simeq (-\mu^2 + \alpha T^2)\phi^2 - \gamma T \phi^3 + \frac{\lambda}{4}\phi^4 + \dots$$

 \bullet The coupling γ makes the electroweak phase transition first-order:

- In the SM and MSSM, γ is generated by *bosonic* loops.
- SM: $\gamma \sim g^3$ \Rightarrow the phase transition is strong only for $m_h \lesssim 70 \text{ GeV}$. [Kajantie, Laine, Rummukainen, Shaposhnikov '98]
- MSSM: $\gamma \sim y_t^3$ (if there is a light stop) \Rightarrow the phase transition is strong only for $m_h \lesssim 120 \text{ GeV}$. [Carena *et al* '96, Laine '96, Losada '97, Laine+Rummukainen '00]

EWBG in the nMSSM

- The trilinear soft term $a_{\lambda} S H_1 \cdot H_2$ contributes to γ at tree level. \longrightarrow potentially stronger first-order phase transition.
- CP violation can be generated by a common gaugino phase. The bubble wall dynamics will work much like in the MSSM.
 [Huet+Nelson '95, Carena et al. '97,..., Huber et al. '06]

New possibilities for CP violation via the singlet are also possible.
 [Huber+Schmidt '00, Huber et al. '06, Ham et al. '07, Freitas et al. '07]

The Electroweak Phase Transition in the nMSSM

Approximate Analysis:

• Consider the effective tree-level potential at fixed $\tan \beta$ including the leading thermal corrections:

$$V(\varphi,\varphi_s,T) \simeq (-m^2 + \xi^2 T^2) \varphi^2 + \tilde{\lambda}^2 \varphi^4 + m_s^2 \varphi_s^2 + 2t_s \varphi_s + 2\tilde{a} \varphi^2 \varphi_s + \lambda^2 \varphi^2 \varphi_s^2.$$

• Along the trajectory with $\partial V / \partial \varphi_s = 0$, the potential becomes

$$\tilde{V}(\varphi,T) \simeq (-m^2 + \xi^2 T^2) \varphi^2 - \frac{(t_s + \tilde{a}\varphi^2)^2}{m_s^2 + \lambda^2 \varphi^2} + \tilde{\lambda}^2 \varphi^4.$$

• A sufficient condition for a first-order phase transition is

|D| > 1

where

$$D := \frac{1}{\tilde{\lambda}m_s^2} \left(\frac{\lambda^2 t_s}{m_s} - m_s \, a_\lambda \, s_\beta c_\beta \right).$$

- Numerical scans using the one-loop effective potential support the approximate analysis.
- We scan over model parameters with universal gaugino masses, as well as $m_{Q_3}^2 = m_{U_3}^2 = (500 \text{ GeV})^2$ and $y_t A_t = 100 \text{ GeV}$.
- Points with $\varphi_c/T_c > 1$ (for $\lambda < 0.7$):

• Viable points seem to have:

 $a_{\lambda} = (300-600) \text{ GeV}, t_s = (50-200 \text{ GeV})^3, |m_s^2| < (200 \text{ GeV})^2.$

Dark Matter in the nMSSM

Charginos and Neutralinos

- The chargino mass matrix is identical to the MSSM, but with $\mu \rightarrow -\lambda v_s$.
- The fermion component of *S*, the singlino, produces a fifth neutralino state.

$$\mathcal{M}_{\tilde{N}} = \begin{pmatrix} M_1 & \cdot & \cdot & \cdot & \cdot \\ 0 & M_2 & \cdot & \cdot & \cdot \\ -c_\beta s_w M_Z & c_\beta c_w M_Z & 0 & \cdot & \cdot \\ s_\beta s_w M_Z & -s_\beta c_w M_Z & \lambda v_s & 0 & \cdot \\ 0 & 0 & \lambda v_2 & \lambda v_1 & 0 \end{pmatrix}$$

• We relate M_1 to M_2 by universality and allow for a common phase;

$$M_2 = |M_2| e^{i\phi} \simeq \frac{\alpha_2}{\alpha_1} M_1.$$

• $\lambda(M_Z) \lesssim 0.8$ for perturbative unification.

 \Rightarrow there is always a light neutralino

e.g.
$$m_{\tilde{N}_1} \simeq \frac{2 \lambda v_1 v_2 v_s}{v_1^2 + v_2^2 + v_s^2},$$

for M_1 , $M_2 \rightarrow \infty$, and $\tan \beta \gg 1$ or $v_s \gg v$.

• This state is mostly singlino, with a small mixture of higgsino.

DM (and EWBG) Results

• Neutralino relic densities consistent with EWBG ($\lambda < 0.7$):

- Dots = parameter sets consistent with EWBG.
- Green line = WMAP result:

 $\Omega_{DM} h^2 = 0.113^{+0.016}_{-0.018}.$

• Blue line = LEP Z-width constraint:

 $\Gamma(Z \rightarrow \tilde{N}_1 \tilde{N}_1) < 2.0$ MeV.

DM Parameter Constraints

- The neutralino LSP for $\lambda <$ 0.7 is mostly singlino with $m_{\tilde{N_1}} \lesssim$ 60 GeV.
- Z-pole annihilation is the dominant LSP channel. \Rightarrow a small higgsino component is needed for a $\tilde{N}_1 \tilde{N}_1 Z^0$ coupling.
- This coupling can still be small enough that $\Gamma(Z^0 \to \tilde{N}_1 \tilde{N}_1)$ is consistent with LEP II for $m_{\tilde{N}_1} \gtrsim 25 \text{ GeV}$.
- Demanding $m_{\tilde{N}_1} > 25 \text{ GeV} (+ \text{ perturbativity})$ constrains parameters.

• $m_{\tilde{N}_1} > 25 \text{ GeV} (+\text{perturbativity})$ requires smaller $\tan \beta$:

• Varying the gaugino phase alters the neutralino mixing.

• $m_{\tilde{N}_1} > 25 \text{ GeV}$ also bounds $|\mu_{eff}| = |\lambda v_s|$ from above:

• $|M_2|$ and μ_{eff} are also bounded from below by $m_{\chi^+} > 104 \, {\rm GeV}$.

Summary

- The nMSSM is a minimal singlet extension of the MSSM that is consistent with the observed cosmology.
- This model solves the μ problem, and has an additional *F*-term contribution to the Higgs boson mass.
- New singlet soft terms help to make the electroweak phase transition strongly first order, even with heavier stops.
 → can accomodate EWBG
- The LSP is usually a mostly singlino neutralino. \rightarrow acceptable dark matter relic density with $m_{\tilde{N}_1} \simeq 30 \,\text{GeV}$.
- New collider phenomenology \rightarrow Ayres' talk.

Extra Slides

Higgs Bosons

- Physical states: 3 CP-even, 2 CP-odd, 1 charged.
- For $M_a^2 \to \infty$, the charged state, one CP-even state, and one CP-odd state decouple.
- The remaining CP-odd state is pure singlet with mass $m_P^2 = m_s^2 + \lambda^2 v^2. \label{eq:mp}$
- The remaining CP-even states have mass matrix

$$M_S^2 = \begin{pmatrix} M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta & \cdot \\ v(a_\lambda \sin 2\beta + 2\lambda^2 v_s) & m_s^2 + \lambda^2 v^2 \end{pmatrix}$$

This is in the basis (S_1, S_2) , where S_1 is SM-like, and S_2 is a singlet.

- EWBG $\Rightarrow \sqrt{m_s^2 + \lambda^2 v^2} \lesssim 250$ GeV.
- If so, there are two light CP-even and one light CP-odd Higgs bosons.
- The lightest CP-even and CP-odd states usually decay invisibly into pairs of the neutralino LSP.
- The CP-even states can still be detected at the LHC through vector boson fusion channels. Define

$$\eta = BR(h \to inv) \frac{\sigma(VBF)}{\sigma(VBF)_{SM}}.$$

- The luminosity needed for a 5σ discovery is then [Eboli+Zeppenfeld '00] $\mathcal{L}_{5\sigma} \simeq 8 \mathrm{fb}^{-1}/\eta^2$.
 - $-\eta \simeq 0.5 0.9$ for the SM-like state.
 - $\eta\simeq 0.0-0.3$ for the mostly singlet state .

Spurions and Tadpoles

- Let $X = M_{Pl} + F_x \theta^2$ parametrize SUSY (and R) breaking.
- The dangerous tadpole operators are (schematically)

$$\int d^4\theta \, \left(X^{\dagger} + \frac{X^{\dagger}X}{M_{\mathsf{PI}}} + \ldots\right)N \to \int d^2\theta \, F_x \, N + \frac{F_x^2}{M_{\mathsf{PI}}} \, n$$

- Even if we get rid of them as a matching condition at M_{PI} , they are regenerated by loops. [Bagger+Poppitz '95, Abel '96]
- Two classes:
 - 1. N is charged under a non-R global symmetry that is explicitly broken by higher dimensional operators.
 - 2. N is charged under an R symmetry that is spontaneously broken in the course of SUSY breaking.