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The nMSSM (MNSSM)



The MSSM

• The minimal supersymmetric standard model (MSSM)

is a well-motivated extension of the SM.

• Even, so there are good reasons to extend the model.

1. µ problem:

W ⊃ µ H1·H2,

µ ∼ Mw ∼ msoft is needed to break the electroweak symmmetry.

Why not µ ∼ MPl or MGUT? (See however [Giudice+Masiero ’88].)

2. LEP II Higgs mass bound:

mh > 114GeV,

but at tree-level, m2
h < M2

Z cos2 2β.

3. Electroweak baryogenesis (EWBG):

It is difficult to obtain a strong first-order electroweak phase

transition required for EWBG if mh > 114GeV.



Adding a Singlet S

• These difficulties can be avoided by replacing the µ term

with a singlet S that gets a VEV,

W ⊃ λ S H1·H2.

• µ problem:

µeff = λ 〈S〉 .

The VEV of S is usually determined by the soft terms.

• Higgs mass:

m2
htree

≤ M2
Z

(

cos2 2β +
2λ2

ḡ2
sin2 2β

)

.

• EWBG: A new S H1·H2 trilinear soft term can make the electroweak

phase transition more strongly first-order.

[Pietroni ’92, Davies et al ’96, Schmidt+Huber ’00, Kang et al ’04.]



But...

• The singlet should be charged under an additional symmtry

to avoid generating new dimensionful (d < 4) couplings.

• The most popular choice is a Z3 symmetry,

which yields the superpotential

W = λ S H1·H2 + κ S3 + (MSSM terms).

This model is called the NMSSM,

the Next-to-Minimal Supersymmetric Standard Model.

• When S gets a VEV, the Z3 symmetry is broken producing

cosmologically unacceptable domain walls.

• The domain wall problem can be avoided by including

non-renormalizable operators that break Z3. However,

these generate a large singlet VEV which destabilizes the hierarchy.

[Abel,Sarkar,+White ’95]



A way out: the nMSSM

• Both problems can be avoided by imposing discrete

R-symmetries on both the superpotential and the Kähler potential.

[Pangiotakopoulos+Tamvakis ’98/’99, Pangiotakopoulos+Pilaftsis ’00, Dedes et al ’00]

• Such symmetries are broken (softly) in the course

of supersymmetry breaking.

• A singlet tadpole can be generated as a result.

• With a ZR
5 or ZR

7 discrete symmetry, a singlet tadpole

is only generated at six or seven loop order,

δV ∼

(

1

16π2

)n F2
x

MPl
S + h.c., with n = 6,7.

For Fx ∼ MW MPl as in gravity mediation,

this is about electroweak size.



• The resulting model is the nMSSM, the not-quite MSSM.

(Also called the MNSSM.)

– Superpotential:

W =
m2

12

λ2
S + λ S H1·H2 + (MSSM matter terms),

– Soft-breaking potential:

Vsoft = ts(S + h.c.) + m2
s |S|

2

+ aλ(S H1·H2 + h.c.) + (MSSM terms).

• All dimensionful couplings can be taken to be of electroweak size.

• The same superpotential and soft-breaking terms also

arise in the low-energy limit of the Fat Higgs model.

[Harnik et.al. ’03]

• Does the nMSSM help with electroweak baryogenesis?



Electroweak Baryogenesis
in the nMSSM



Electroweak Baryogenesis

• EWBG → generation of the baryon asymmetry during

the electroweak phase transition.

• At high temperatures, the EW symmetry is restored.

It is broken as the Universe cools.

SU(2)L × U(1)Y −→ U(1)em.

• If this phase transition is first order, it proceeds by

the nucleation of bubbles of broken phase.

• Baryons are produced by reactions near the bubble walls.

<ϕ> = 0
<ϕ> = 0

<ϕ> = 0

<ϕ> = 0



Producing Baryons

• CP violating interactions within the bubble wall produce

a net chiral fermion charge outside the bubble.

• Sphaleron transitions convert the chiral charge into baryons.

• The baryons are swept into the bubbles, where they are stable provided

〈φc〉

Tc
& 1.

CP

χ
R

χ
L
     +  

χ
L

Sphaleron
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EWBG in the SM and the MSSM

• In the SM and MSSM, the Higgs effective potential has the form:

Veff ' (−µ2 + α T2)φ2 − γ T φ3 +
λ

4
φ4 + . . . .

• The coupling γ makes the electroweak phase transition first-order:

φc

Tc
'

γ

λ
.

• In the SM and MSSM, γ is generated by bosonic loops.

• SM: γ ∼ g3

⇒ the phase transition is strong only for mh . 70GeV.

[Kajantie, Laine, Rummukainen, Shaposhnikov ’98]

• MSSM: γ ∼ y3
t (if there is a light stop)

⇒ the phase transition is strong only for mh . 120GeV.

[Carena et al ’96, Laine ’96, Losada ’97, Laine+Rummukainen ’00]



EWBG in the nMSSM

• The trilinear soft term aλ S H1·H2 contributes to γ at tree level.

−→ potentially stronger first-order phase transition.

• CP violation can be generated by a common gaugino phase.

The bubble wall dynamics will work much like in the MSSM.

[Huet+Nelson ’95, Carena et al. ’97,. . . , Huber et al. ’06]

• New possibilities for CP violation via the singlet are also possible.

[Huber+Schmidt ’00, Huber et al. ’06, Ham et al. ’07, Freitas et al. ’07 ]



The Electroweak Phase Transition in the nMSSM

Approximate Analysis:

• Consider the effective tree-level potential at fixed tanβ

including the leading thermal corrections:

V (ϕ, ϕs, T ) ' (−m2 + ξ2 T2)ϕ2 + λ̃2 ϕ4

+ m2
s ϕ2

s + 2ts ϕs + 2ã ϕ2ϕs + λ2 ϕ2ϕ2
s .

• Along the trajectory with ∂V/∂ϕs = 0, the potential becomes

Ṽ (ϕ, T ) ' (−m2 + ξ2 T2)ϕ2 −
(ts + ãϕ2)2

m2
s + λ2ϕ2

+ λ̃2 ϕ4.

• A sufficient condition for a first-order phase transition is

|D| > 1

where

D :=
1

λ̃m2
s

(

λ2ts

ms
− ms aλ sβcβ

)

.



• Numerical scans using the one-loop effective potential

support the approximate analysis.

• We scan over model parameters with universal gaugino masses,

as well as m2
Q3

= m2
U3

= (500GeV)2 and ytAt = 100GeV.

• Points with ϕc/Tc > 1 (for λ < 0.7):

m S

D

−3

−2

−1

 0

 1

 2

 3

 0  50  100  150  200  250  300

• Viable points seem to have:

aλ = (300−600)GeV, ts = (50− 200GeV)3, |m2
s | < (200GeV)2.



Dark Matter in the nMSSM



Charginos and Neutralinos

• The chargino mass matrix is identical to the MSSM, but with µ → −λ vs.

• The fermion component of S, the singlino,

produces a fifth neutralino state.

MÑ =

















M1 · · · ·
0 M2 · · ·

−cβswMZ cβcwMZ 0 · ·

sβswMZ −sβcwMZ λvs 0 ·

0 0 λv2 λv1 0

















• We relate M1 to M2 by universality and allow for a common phase;

M2 = |M2| e
iφ ' α2

α1
M1.



• λ(MZ) . 0.8 for perturbative unification.

⇒ there is always a light neutralino

e.g. mÑ1
'

2λ v1 v2 vs

v2
1 + v2

2 + v2
s
,

for M1, M2 → ∞, and tanβ À 1 or vs À v.

• This state is mostly singlino, with a small mixture of higgsino.



DM (and EWBG) Results

• Neutralino relic densities consistent with EWBG (λ < 0.7):

Ω h
2

Z width

Exp. Value

           LSP Mass  (GeV)

 1e−05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 10  20  30  40  50  60  70  80  90  100

• Dots = parameter sets consistent with EWBG.

• Green line = WMAP result:

ΩDM h2 = 0.113+0.016
−0.018 .

• Blue line = LEP Z-width constraint:

Γ(Z → Ñ1Ñ1) < 2.0 MeV.



DM Parameter Constraints

• The neutralino LSP for λ < 0.7 is mostly singlino

with mÑ1
. 60GeV.

• Z-pole annihilation is the dominant LSP channel.

⇒ a small higgsino component is needed for a Ñ1Ñ1 Z0 coupling.

• This coupling can still be small enough that Γ(Z0 → Ñ1Ñ1)

is consistent with LEP II for mÑ1
& 25GeV.

• Demanding mÑ1
> 25GeV (+ perturbativity) constrains parameters.



• mÑ1
> 25GeV (+perturbativity) requires smaller tanβ:

βtan

π

0
π/2

λ
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• Varying the gaugino phase alters the neutralino mixing.



• mÑ1
> 25GeV also bounds |µeff | = |λ vs| from above:

2|M   |

|µ|

π
π/2

0

 0
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• |M2| and µeff are also bounded from below by mχ+ > 104GeV.



Summary

• The nMSSM is a minimal singlet extension of the MSSM

that is consistent with the observed cosmology.

• This model solves the µ problem, and has an additional

F -term contribution to the Higgs boson mass.

• New singlet soft terms help to make the electroweak phase

transition strongly first order, even with heavier stops.

→ can accomodate EWBG

• The LSP is usually a mostly singlino neutralino.

→ acceptable dark matter relic density with mÑ1
' 30GeV.

• New collider phenomenology → Ayres’ talk.



Extra Slides



Higgs Bosons

• Physical states: 3 CP-even, 2 CP-odd, 1 charged.

• For M2
a → ∞, the charged state, one CP-even state,

and one CP-odd state decouple.

• The remaining CP-odd state is pure singlet with mass

m2
P = m2

s + λ2v2.

• The remaining CP-even states have mass matrix

M2
S =

(

M2
Z cos2 2β + λ2 v2 sin2 2β ·

v(aλ sin 2β +2λ2vs) m2
s + λ2v2

)

.

This is in the basis (S1, S2), where S1 is SM-like,

and S2 is a singlet.



• EWBG ⇒
√

m2
s + λ2v2 . 250 GeV.

• If so, there are two light CP-even and one light CP-odd Higgs bosons.

• The lightest CP-even and CP-odd states usually

decay invisibly into pairs of the neutralino LSP.

• The CP-even states can still be detected at the LHC

through vector boson fusion channels. Define

η = BR(h → inv)
σ(V BF )

σ(V BF )SM
.

• The luminosity needed for a 5σ discovery is then [Eboli+Zeppenfeld ’00]

L5σ ' 8fb−1/η2.

– η ' 0.5− 0.9 for the SM-like state.

– η ' 0.0− 0.3 for the mostly singlet state .



Spurions and Tadpoles

• Let X = MPl + Fx θ2 parametrize SUSY (and R) breaking.

• The dangerous tadpole operators are (schematically)

∫

d4θ (X† +
X†X

MPl
+ . . .)N →

∫

d2θ Fx N +
F2

x

MPl
n

• Even if we get rid of them as a matching condition at MPl,

they are regenerated by loops. [Bagger+Poppitz ’95, Abel ’96]

• Two classes:

1. N is charged under a non-R global symmetry that is

explicitly broken by higher dimensional operators.

2. N is charged under an R symmetry that is

spontaneously broken in the course of SUSY breaking.


